Novel Chelating Agents for Zirconium-89-Positron Emission Tomography (PET) Imaging: Synthesis, DFT Calculation, Radiolabeling, and In Vitro and In Vivo Complex Stability

Chi Soo Kang, Shuyuan Zhang, Haixing Wang, Yujie Liu, Siyuan Ren, Yanda Chen, Jingbai Li, Nilantha Bandara, Andrey Yu Rogachev, Buck E. Rogers, Hyun Soon Chong

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We report the synthesis and evaluation of novel chelating agents for zirconium-89 (89Zr) with positron emission tomography (PET) imaging applications. New chelating agents NODHA, NOTHA, and NODHA-PY were constructed on 1,4,7-triazacyclononane (TACN) and possess hydroxamic acid or a pyridine ring as an acyclic binding moiety. The new chelating agents were theoretically studied for complexation with Zr(IV). Structures of Zr(IV)-NODHA, Zr(IV)-NOTHA, and Zr(IV)-NODHA-PY were predicted using density functional methods. NODHA was found to form stronger bonds with Zr(IV) when compared to NOTHA and NODHA-PY. The new chelating agents were evaluated for radiolabeling efficiency in binding 89Zr. The corresponding [89Zr]Zr-labeled chelators were evaluated for complex stability in human serum. All new chelating agents rapidly bound to 89Zr in excellent radiolabeling efficiency at room temperature. Among the new [89Zr]Zr-labeled chelators evaluated, [89Zr]Zr-NODHA showed the highest stability in human serum without losing 89Zr, and [89Zr]Zr-NODHA-PY released a considerable amount of 89Zr in human serum. [89Zr]Zr-NODHA, [89Zr]Zr-NODHA-PY, and [89Zr]Zr-DFO were comparatively evaluated for in vivo complex stability by performing biodistribution studies using normal mice. [89Zr]Zr-DFO had the lowest bone uptake at all time points, while [89Zr]Zr-NODHA-PY showed poor stability in mice as evidenced by high bone accumulation at the 24 h time point. [89Zr]Zr-NODHA exhibited better renal clearance but higher bone uptake than [89Zr]Zr-DFO.

Original languageEnglish
Pages (from-to)37229-37236
Number of pages8
JournalACS Omega
Volume7
Issue number42
DOIs
StatePublished - Oct 25 2022

Fingerprint

Dive into the research topics of 'Novel Chelating Agents for Zirconium-89-Positron Emission Tomography (PET) Imaging: Synthesis, DFT Calculation, Radiolabeling, and In Vitro and In Vivo Complex Stability'. Together they form a unique fingerprint.

Cite this