TY - JOUR
T1 - Novel approach to computer modeling of seven-helical transmembrane proteins
T2 - Current progress in the test case of bacteriorhodopsin
AU - Nikiforovich, Gregory V.
AU - Galaktionov, Stan
AU - Balodis, Juris
AU - Marshall, Garland R.
PY - 2001
Y1 - 2001
N2 - G-protein coupled receptors (GPCRs) are thought to be proteins with 7-membered transmembrane helical bundles (7TM proteins). Recently, the X-ray structures have been solved for two such proteins, namely for bacteriorhodopsin (BR) and rhodopsin (Rh), the latter being a GPCR. Despite similarities, the structures are different enough to suggest that 3D models for different GPCRs cannot be obtained directly employing 3D structures of BR or Rh as a unique template. The approach to computer modeling of 7TM proteins developed in this work was capable of reproducing the experimental X-ray structure of BR with great accuracy. A combination of helical packing and low-energy conformers for loops most close to the X-ray structure possesses the r.m.s.d. value of 3.13 Å. Such a level of accuracy for the 3D-structure prediction for a 216-residue protein has not been achieved, so far, by any available ab initio procedure of protein folding. The approach may produce also other energetically consistent combinations of helical bundles and loop conformers, creating a variety of possible templates for 3D structures of 7TM proteins, including GPCRs. These templates may provide experimentalists with various plausible options for 3D structure of a given GPCR; in our view, only experiments will determine the final choice of the most reasonable 3D template.
AB - G-protein coupled receptors (GPCRs) are thought to be proteins with 7-membered transmembrane helical bundles (7TM proteins). Recently, the X-ray structures have been solved for two such proteins, namely for bacteriorhodopsin (BR) and rhodopsin (Rh), the latter being a GPCR. Despite similarities, the structures are different enough to suggest that 3D models for different GPCRs cannot be obtained directly employing 3D structures of BR or Rh as a unique template. The approach to computer modeling of 7TM proteins developed in this work was capable of reproducing the experimental X-ray structure of BR with great accuracy. A combination of helical packing and low-energy conformers for loops most close to the X-ray structure possesses the r.m.s.d. value of 3.13 Å. Such a level of accuracy for the 3D-structure prediction for a 216-residue protein has not been achieved, so far, by any available ab initio procedure of protein folding. The approach may produce also other energetically consistent combinations of helical bundles and loop conformers, creating a variety of possible templates for 3D structures of 7TM proteins, including GPCRs. These templates may provide experimentalists with various plausible options for 3D structure of a given GPCR; in our view, only experiments will determine the final choice of the most reasonable 3D template.
KW - Bacteriorhodopsin
KW - Computer modeling
KW - G-protein coupled receptors
UR - http://www.scopus.com/inward/record.url?scp=0035237770&partnerID=8YFLogxK
U2 - 10.18388/abp.2001_5111
DO - 10.18388/abp.2001_5111
M3 - Article
C2 - 11440183
AN - SCOPUS:0035237770
SN - 0001-527X
VL - 48
SP - 53
EP - 64
JO - Acta Biochimica Polonica
JF - Acta Biochimica Polonica
IS - 1
ER -