TY - JOUR
T1 - Notch-Mediated Epigenetic Regulation of Voltage-Gated Potassium Currents
AU - Khandekar, Aditi
AU - Springer, Steven
AU - Wang, Wei
AU - Hicks, Stephanie
AU - Weinheimer, Carla
AU - Diaz-Trelles, Ramon
AU - Nerbonne, Jeanne M.
AU - Rentschler, Stacey
N1 - Publisher Copyright:
© 2016 American Heart Association, Inc.
PY - 2016/12/9
Y1 - 2016/12/9
N2 - Rationale: Ventricular arrhythmias often arise from the Purkinje-myocyte junction and are a leading cause of sudden cardiac death. Notch activation reprograms cardiac myocytes to an induced Purkinje-like state characterized by prolonged action potential duration and expression of Purkinje-enriched genes. Objective: To understand the mechanism by which canonical Notch signaling causes action potential prolongation. Methods and Results: We find that endogenous Purkinje cells have reduced peak K + current, I to, and I K,slow when compared with ventricular myocytes. Consistent with partial reprogramming toward a Purkinje-like phenotype, Notch activation decreases peak outward K + current density, as well as the outward K + current components I to,f and I K, slow. Gene expression studies in Notch-activated ventricles demonstrate upregulation of Purkinje-enriched genes Contactin-2 and Scn5a and downregulation of K + channel subunit genes that contribute to I to,f and I K,slow. In contrast, inactivation of Notch signaling results in increased cell size commensurate with increased K + current amplitudes and mimics physiological hypertrophy. Notch-induced changes in K + current density are regulated at least in part via transcriptional changes. Chromatin immunoprecipitation demonstrates dynamic RBP-J (recombination signal binding protein for immunoglobulin kappa J region) binding and loss of active histone marks on K + channel subunit promoters with Notch activation, and similar transcriptional and epigenetic changes occur in a heart failure model. Interestingly, there is a differential response in Notch target gene expression and cellular electrophysiology in left versus right ventricular cardiac myocytes. Conclusions: In summary, these findings demonstrate a novel mechanism for regulation of voltage-gated potassium currents in the setting of cardiac pathology and may provide a novel target for arrhythmia drug design.
AB - Rationale: Ventricular arrhythmias often arise from the Purkinje-myocyte junction and are a leading cause of sudden cardiac death. Notch activation reprograms cardiac myocytes to an induced Purkinje-like state characterized by prolonged action potential duration and expression of Purkinje-enriched genes. Objective: To understand the mechanism by which canonical Notch signaling causes action potential prolongation. Methods and Results: We find that endogenous Purkinje cells have reduced peak K + current, I to, and I K,slow when compared with ventricular myocytes. Consistent with partial reprogramming toward a Purkinje-like phenotype, Notch activation decreases peak outward K + current density, as well as the outward K + current components I to,f and I K, slow. Gene expression studies in Notch-activated ventricles demonstrate upregulation of Purkinje-enriched genes Contactin-2 and Scn5a and downregulation of K + channel subunit genes that contribute to I to,f and I K,slow. In contrast, inactivation of Notch signaling results in increased cell size commensurate with increased K + current amplitudes and mimics physiological hypertrophy. Notch-induced changes in K + current density are regulated at least in part via transcriptional changes. Chromatin immunoprecipitation demonstrates dynamic RBP-J (recombination signal binding protein for immunoglobulin kappa J region) binding and loss of active histone marks on K + channel subunit promoters with Notch activation, and similar transcriptional and epigenetic changes occur in a heart failure model. Interestingly, there is a differential response in Notch target gene expression and cellular electrophysiology in left versus right ventricular cardiac myocytes. Conclusions: In summary, these findings demonstrate a novel mechanism for regulation of voltage-gated potassium currents in the setting of cardiac pathology and may provide a novel target for arrhythmia drug design.
KW - Brugada syndrome
KW - Notch receptors Purkinje cells
KW - action potential
KW - cardiomyopathies
KW - cellular reprogramming
KW - electrophysiology
UR - http://www.scopus.com/inward/record.url?scp=85002958833&partnerID=8YFLogxK
U2 - 10.1161/CIRCRESAHA.116.309877
DO - 10.1161/CIRCRESAHA.116.309877
M3 - Article
C2 - 27697822
AN - SCOPUS:85002958833
SN - 0009-7330
VL - 119
SP - 1324
EP - 1338
JO - Circulation research
JF - Circulation research
IS - 12
ER -