TY - JOUR
T1 - Normal hematopoiesis and neurofibromin-deficient myeloproliferative disease require Erk
AU - Staser, Karl
AU - Park, Su Jung
AU - Rhodes, Steven D.
AU - Zeng, Yi
AU - He, Yong Zheng
AU - Shew, Matthew A.
AU - Gehlhausen, Jeffrey R.
AU - Cerabona, Donna
AU - Menon, Keshav
AU - Chen, Shi
AU - Sun, Zejin
AU - Yuan, Jin
AU - Ingram, David A.
AU - Nalepa, Grzegorz
AU - Yang, Feng Chun
AU - Clapp, D. Wade
PY - 2013/1/2
Y1 - 2013/1/2
N2 - Neurofibromatosis type 1 (NF1) predisposes individuals to the development of juvenile myelomonocytic leukemia (JMML), a fatal myeloproliferative disease (MPD). In genetically engineered murine models, nullizygosity of Nf1, a tumor suppressor gene that encodes a Ras-GTPase-activating protein, results in hyperactivity of Raf/Mek/Erk in hematopoietic stem and progenitor cells (HSPCs). Activated Erk1/2 phosphorylate kinases and transcription factors with myriad mitogenic roles in diverse cell types. However, genetic studies examining Erk1/2's differential and/or combined control of normal and Nf1-deficient myelopoiesis are lacking. Moreover, prior studies relying on chemical Mek/Erk inhibitors have reached conflicting conclusions in normal and Nf1-deficient mice. Here, we show that while single Erk1 or Erk2 disruption did not grossly compromise myelopoiesis, dual Erk1/2 disruption rapidly ablated granulocyte and monocyte production in vivo, diminished progenitor cell number, and prevented HSPC proliferation in vitro. Genetic disruption of Erk1/2 in the context of Nf1 nullizygosity (Mx1Cre+Nf1flox/floxErk1 -/-Erk2flox/flox) fully protects against the development of MPD. Collectively, we identified a fundamental requirement for Erk1/2 signaling in normal and Nf1-deficient hematopoiesis, elucidating a critical hematopoietic function for Erk1/2 while genetically validating highly selective Mek/Erk inhibitors in a leukemia that is otherwise resistant to traditional therapy.
AB - Neurofibromatosis type 1 (NF1) predisposes individuals to the development of juvenile myelomonocytic leukemia (JMML), a fatal myeloproliferative disease (MPD). In genetically engineered murine models, nullizygosity of Nf1, a tumor suppressor gene that encodes a Ras-GTPase-activating protein, results in hyperactivity of Raf/Mek/Erk in hematopoietic stem and progenitor cells (HSPCs). Activated Erk1/2 phosphorylate kinases and transcription factors with myriad mitogenic roles in diverse cell types. However, genetic studies examining Erk1/2's differential and/or combined control of normal and Nf1-deficient myelopoiesis are lacking. Moreover, prior studies relying on chemical Mek/Erk inhibitors have reached conflicting conclusions in normal and Nf1-deficient mice. Here, we show that while single Erk1 or Erk2 disruption did not grossly compromise myelopoiesis, dual Erk1/2 disruption rapidly ablated granulocyte and monocyte production in vivo, diminished progenitor cell number, and prevented HSPC proliferation in vitro. Genetic disruption of Erk1/2 in the context of Nf1 nullizygosity (Mx1Cre+Nf1flox/floxErk1 -/-Erk2flox/flox) fully protects against the development of MPD. Collectively, we identified a fundamental requirement for Erk1/2 signaling in normal and Nf1-deficient hematopoiesis, elucidating a critical hematopoietic function for Erk1/2 while genetically validating highly selective Mek/Erk inhibitors in a leukemia that is otherwise resistant to traditional therapy.
UR - http://www.scopus.com/inward/record.url?scp=84873872323&partnerID=8YFLogxK
U2 - 10.1172/JCI66167
DO - 10.1172/JCI66167
M3 - Article
C2 - 23221339
AN - SCOPUS:84873872323
SN - 0021-9738
VL - 123
SP - 329
EP - 334
JO - Journal of Clinical Investigation
JF - Journal of Clinical Investigation
IS - 1
ER -