Nonobstructive coronary artery disease and risk of myocardial infarction

Thomas M. Maddox, Maggie A. Stanislawski, Gary K. Grunwald, Steven M. Bradley, P. Michael Ho, Thomas T. Tsai, Manesh R. Patel, Amneet Sandhu, Javier Valle, David J. Magid, Benjamin Leon, Deepak L. Bhatt, Stephan D. Fihn, John S. Rumsfeld

Research output: Contribution to journalArticlepeer-review

407 Scopus citations


IMPORTANCE Little is known about cardiac adverse events among patients with nonobstructive coronary artery disease (CAD).

OBJECTIVE To compare myocardial infarction (MI) and mortality rates between patients with nonobstructive CAD, obstructive CAD, and no apparent CAD in a national cohort.

DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study of all US veterans undergoing elective coronary angiography for CAD between October 2007 and September 2012 in the Veterans Affairs health care system. Patients with prior CAD events were excluded.

EXPOSURES Angiographic CAD extent, defined by degree (no apparent CAD: no stenosis >20%; nonobstructive CAD: ≥1 stenosis ≥20% but no stenosis ≥70%; obstructive CAD: any stenosis ≥70% or left main [LM] stenosis ≥50%) and distribution (1,2, or 3 vessel).

MAIN OUTCOMES AND MEASURES The primary outcome was 1-year hospitalization for nonfatal MI after the index angiography. Secondary outcomes included 1-year all-cause mortality and combined 1-year MI and mortality.

RESULTS Among 37 674 patients, 8384 patients (22.3%) had nonobstructive CAD and 20 899 patients (55.4%) had obstructive CAD. Within 1 year, 845 patients died and 385 were rehospitalized for MI. Among patients with no apparent CAD, the 1-year MI rate was 0.11% (n = 8, 95% CI, 0.10%-0.20%) and increased progressively by 1-vessel nonobstructive CAD, 0.24% (n = 10, 95% CI, 0.10%-0.40%); 2-vessel nonobstructive CAD, 0.56% (n = 13, 95% CI, 0.30%-1.00%); 3-vessel nonobstructive CAD, 0.59% (n = 6, 95% CI, 0.30%-1.30%); 1-vessel obstructive CAD, 1.18% (n = 101, 95% CI, 1.00%-1.40%); 2-vessel obstructive CAD, 2.18% (n = 110, 95% CI, 1.80%-2.60%); and 3-vessel or LM obstructive CAD, 2.47% (n = 137, 95% CI, 2.10%-2.90%). After adjustment, 1-year MI rates increased with increasing CAD extent. Relative to patients with no apparent CAD, patients with 1-vessel nonobstructive CAD had a hazard ratio (HR) for 1-year MI of 2.0 (95% CI, 0.8-5.1); 2-vessel nonobstructive HR, 4.6 (95% CI, 2.0-10.5); 3-vessel nonobstructive HR, 4.5 (95% CI, 1.6-12.5); 1-vessel obstructive HR, 9.0 (95% CI, 4.2-19.0); 2-vessel obstructive HR, 16.5 (95% CI, 8.1-33.7); and 3-vessel or LM obstructive HR, 19.5 (95% CI, 9.9-38.2). One-year mortality rates were associated with increasing CAD extent, ranging from 1.38% among patients without apparent CAD to 4.30% with 3-vessel or LM obstructive CAD. After risk adjustment, there was no significant association between 1- or 2-vessel nonobstructive CAD and mortality, but there were significant associations with mortality for 3-vessel nonobstructive CAD (HR, 1.6; 95% CI, 1.1-2.5), 1-vessel obstructive CAD (HR, 1.9; 95% CI, 1.4-2.6), 2-vessel obstructive CAD (HR, 2.8; 95% CI, 2.1-3.7), and 3-vessel or LM obstructive CAD (HR, 3.4; 95% CI, 2.6-4.4). Similar associations were noted with the combined outcome.

CONCLUSIONS AND RELEVANCE In this cohort of patients undergoing elective coronary angiography, nonobstructive CAD, compared with no apparent CAD, was associated with a significantly greater 1-year risk of MI and all-cause mortality. These findings suggest clinical importance of nonobstructive CAD and warrant further investigation of interventions to improve outcomes among these patients.

Original languageEnglish
Pages (from-to)1754-1763
Number of pages10
JournalJAMA - Journal of the American Medical Association
Issue number17
StatePublished - Nov 5 2014


Dive into the research topics of 'Nonobstructive coronary artery disease and risk of myocardial infarction'. Together they form a unique fingerprint.

Cite this