Noninvasive depth estimation using tissue optical properties and a dual-wavelength fluorescent molecular probe in vivo

Jessica P. Miller, Dolonchampa Maji, Jesse Lam, Bruce J. Tromberg, Samuel Achilefu

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Translation of fluorescence imaging using molecularly targeted imaging agents for real-time assessment of surgical margins in the operating room requires a fast and reliable method to predict tumor depth from planar optical imaging. Here, we developed a dual-wavelength fluorescent molecular probe with distinct visible and near-infrared excitation and emission spectra for depth estimation in mice and a method to predict the optical properties of the imaging medium such that the technique is applicable to a range of medium types. Imaging was conducted at two wavelengths in a simulated blood vessel and an in vivo tumor model. Although the depth estimation method was insensitive to changes in the molecular probe concentration, it was responsive to the optical parameters of the medium. Results of the intra-tumor fluorescent probe injection showed that the average measured tumor sub-surface depths were 1.31 ± 0.442 mm, 1.07 ± 0.187 mm, and 1.42 ± 0.182 mm, and the average estimated sub-surface depths were 0.97 ± 0.308 mm, 1.11 ± 0.428 mm, 1.21 ± 0.492 mm, respectively. Intravenous injection of the molecular probe allowed for selective tumor accumulation, with measured tumor sub-surface depths of 1.28 ± 0.168 mm, and 1.50 ± 0.394 mm, and the estimated depths were 1.46 ± 0.314 mm, and 1.60 ± 0.409 mm, respectively. Expansion of our technique by using material optical properties and mouse skin optical parameters to estimate the sub-surface depth of a tumor demonstrated an agreement between measured and estimated depth within 0.38 mm and 0.63 mm for intra-tumor and intravenous dye injections, respectively. Our results demonstrate the feasibility of dual-wavelength imaging for determining the depth of blood vessels and characterizing the sub-surface depth of tumors in vivo.

Original languageEnglish
Article number#287599
JournalBiomedical Optics Express
Volume8
Issue number6
DOIs
StatePublished - Jun 1 2017

Keywords

  • Medical and biological imaging
  • Medical optics and biotechnology

Fingerprint

Dive into the research topics of 'Noninvasive depth estimation using tissue optical properties and a dual-wavelength fluorescent molecular probe in vivo'. Together they form a unique fingerprint.

Cite this