TY - JOUR
T1 - Noncoding RNAs in Cardiovascular Disease
T2 - Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association
AU - Das, Saumya
AU - Shah, Ravi
AU - Dimmeler, Stefanie
AU - Freedman, Jane E.
AU - Holley, Christopher
AU - Lee, Jin Moo
AU - Moore, Kathryn
AU - Musunuru, Kiran
AU - Wang, Da Zhi
AU - Xiao, Junjie
AU - Yin, Ke Jie
N1 - Publisher Copyright:
© 2020 Lippincott Williams and Wilkins. All rights reserved.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Background: The discovery that much of the non-protein-coding genome is transcribed and plays a diverse functional role in fundamental cellular processes has led to an explosion in the development of tools and technologies to investigate the role of these noncoding RNAs in cardiovascular health. Furthermore, identifying noncoding RNAs for targeted therapeutics to treat cardiovascular disease is an emerging area of research. The purpose of this statement is to review existing literature, offer guidance on tools and technologies currently available to study noncoding RNAs, and identify areas of unmet need. Methods: The writing group used systematic literature reviews (including MEDLINE, Web of Science through 2018), expert opinion/statements, analyses of databases and computational tools/algorithms, and review of current clinical trials to provide a broad consensus on the current state of the art in noncoding RNA in cardiovascular disease. Results: Significant progress has been made since the initial studies focusing on the role of miRNAs (microRNAs) in cardiovascular development and disease. Notably, recent progress on understanding the role of novel types of noncoding small RNAs such as snoRNAs (small nucleolar RNAs), tRNA (transfer RNA) fragments, and Y-RNAs in cellular processes has revealed a noncanonical function for many of these molecules. Similarly, the identification of long noncoding RNAs that appear to play an important role in cardiovascular disease processes, coupled with the development of tools to characterize their interacting partners, has led to significant mechanistic insight. Finally, recent work has characterized the unique role of extracellular RNAs in mediating intercellular communication and their potential role as biomarkers. Conclusions: The rapid expansion of tools and pipelines for isolating, measuring, and annotating these entities suggests that caution in interpreting results is warranted until these methodologies are rigorously validated. Most investigators have focused on investigating the functional role of single RNA entities, but studies suggest complex interaction between different RNA molecules. The use of network approaches and advanced computational tools to understand the interaction of different noncoding RNA species to mediate a particular phenotype may be required to fully comprehend the function of noncoding RNAs in mediating disease phenotypes.
AB - Background: The discovery that much of the non-protein-coding genome is transcribed and plays a diverse functional role in fundamental cellular processes has led to an explosion in the development of tools and technologies to investigate the role of these noncoding RNAs in cardiovascular health. Furthermore, identifying noncoding RNAs for targeted therapeutics to treat cardiovascular disease is an emerging area of research. The purpose of this statement is to review existing literature, offer guidance on tools and technologies currently available to study noncoding RNAs, and identify areas of unmet need. Methods: The writing group used systematic literature reviews (including MEDLINE, Web of Science through 2018), expert opinion/statements, analyses of databases and computational tools/algorithms, and review of current clinical trials to provide a broad consensus on the current state of the art in noncoding RNA in cardiovascular disease. Results: Significant progress has been made since the initial studies focusing on the role of miRNAs (microRNAs) in cardiovascular development and disease. Notably, recent progress on understanding the role of novel types of noncoding small RNAs such as snoRNAs (small nucleolar RNAs), tRNA (transfer RNA) fragments, and Y-RNAs in cellular processes has revealed a noncanonical function for many of these molecules. Similarly, the identification of long noncoding RNAs that appear to play an important role in cardiovascular disease processes, coupled with the development of tools to characterize their interacting partners, has led to significant mechanistic insight. Finally, recent work has characterized the unique role of extracellular RNAs in mediating intercellular communication and their potential role as biomarkers. Conclusions: The rapid expansion of tools and pipelines for isolating, measuring, and annotating these entities suggests that caution in interpreting results is warranted until these methodologies are rigorously validated. Most investigators have focused on investigating the functional role of single RNA entities, but studies suggest complex interaction between different RNA molecules. The use of network approaches and advanced computational tools to understand the interaction of different noncoding RNA species to mediate a particular phenotype may be required to fully comprehend the function of noncoding RNAs in mediating disease phenotypes.
KW - AHA Scientific Statements
KW - RNA, long noncoding
KW - RNA, small nucleolar
KW - RNA, untranslated
KW - cardiovascular diseases
KW - microRNAs
UR - http://www.scopus.com/inward/record.url?scp=85089768784&partnerID=8YFLogxK
U2 - 10.1161/HCG.0000000000000062
DO - 10.1161/HCG.0000000000000062
M3 - Review article
C2 - 32812806
AN - SCOPUS:85089768784
SN - 2574-8300
VL - 13
SP - E000062
JO - Circulation: Genomic and Precision Medicine
JF - Circulation: Genomic and Precision Medicine
IS - 4
ER -