TY - JOUR
T1 - No vascular calcification on cardiac computed tomography spanning asfotase alfa treatment for an elderly woman with hypophosphatasia
AU - Whyte, Michael P.
AU - McAlister, William H.
AU - Mumm, Steven
AU - Bierhals, Andrew J.
N1 - Funding Information:
Supported In Part By: Shriners Hospitals for Children and The Clark and Mildred Cox Inherited Metabolic Bone Disease Research Fund and the Hypophosphatasia Research Fund at The Barnes-Jewish Hospital Foundation, Washington University School of Medicine; St. Louis, MO, USA.
Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2019/5
Y1 - 2019/5
N2 - Hypophosphatasia (HPP) is the inborn-error-of-metabolism characterized enzymatically by insufficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP) and caused by either mono- or bi-allelic loss-of-function mutation(s) of the gene ALPL that encodes this cell surface phosphomonoester phosphohydrolase. In HPP, the natural substrates of TNSALP accumulate extracellularly and include inorganic pyrophosphate (PPi), a potent inhibitor of biomineralization. This PPi excess leads to rickets or osteomalacia in all but the most mild “odonto” form of the disease. Adults with HPP understandably often also manifest calcium PPi dihydrate deposition, whereas enthesopathy and calcific periarthritis from hydroxyapatite (HA) crystal deposition can seem paradoxical in face of the defective skeletal mineralization. In 2015, asfotase alfa (AA), a HA-targeted TNSALP, was approved multinationally as an enzyme replacement therapy for HPP. AA hydrolyzes extracellular PPi (ePPi) and in HPP enables HA crystals to grow and mineralize skeletal matrix. In direct contrast to HPP, deficiency of ePPi characterizes the inborn-errors-of-metabolism generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE). In GACI and PXE, deficiency of ePPi leads to ectopic mineralization including vascular calcification (VC). Therefore, in HPP, ectopic mineralization including VC could hypothetically result from, or be exacerbated by, the persistently high circulating TNSALP activity that occurs during AA treatment. Herein, using a routine computed tomography (CT) method to quantitate coronary artery calcium, we found no ectopic mineralization in the heart of an elderly woman with HPP before or after 8 months of AA treatment. Subsequently, investigational high-resolution peripheral quantitative CT and dual-energy X-ray absorptiometry showed absence of peripheral artery and aortic calcium after further AA treatment. Investigation of additional adults with HPP could reveal if the superabundance of ePPi protects against VC, and whether long-term AA therapy causes or exacerbates any ectopic mineralization.
AB - Hypophosphatasia (HPP) is the inborn-error-of-metabolism characterized enzymatically by insufficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP) and caused by either mono- or bi-allelic loss-of-function mutation(s) of the gene ALPL that encodes this cell surface phosphomonoester phosphohydrolase. In HPP, the natural substrates of TNSALP accumulate extracellularly and include inorganic pyrophosphate (PPi), a potent inhibitor of biomineralization. This PPi excess leads to rickets or osteomalacia in all but the most mild “odonto” form of the disease. Adults with HPP understandably often also manifest calcium PPi dihydrate deposition, whereas enthesopathy and calcific periarthritis from hydroxyapatite (HA) crystal deposition can seem paradoxical in face of the defective skeletal mineralization. In 2015, asfotase alfa (AA), a HA-targeted TNSALP, was approved multinationally as an enzyme replacement therapy for HPP. AA hydrolyzes extracellular PPi (ePPi) and in HPP enables HA crystals to grow and mineralize skeletal matrix. In direct contrast to HPP, deficiency of ePPi characterizes the inborn-errors-of-metabolism generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE). In GACI and PXE, deficiency of ePPi leads to ectopic mineralization including vascular calcification (VC). Therefore, in HPP, ectopic mineralization including VC could hypothetically result from, or be exacerbated by, the persistently high circulating TNSALP activity that occurs during AA treatment. Herein, using a routine computed tomography (CT) method to quantitate coronary artery calcium, we found no ectopic mineralization in the heart of an elderly woman with HPP before or after 8 months of AA treatment. Subsequently, investigational high-resolution peripheral quantitative CT and dual-energy X-ray absorptiometry showed absence of peripheral artery and aortic calcium after further AA treatment. Investigation of additional adults with HPP could reveal if the superabundance of ePPi protects against VC, and whether long-term AA therapy causes or exacerbates any ectopic mineralization.
KW - Alkaline phosphatase
KW - Biomineralization
KW - DXA
KW - Ectopic calcification
KW - Generalized arterial calcification of infancy
KW - HR-pQCT
KW - Inborn error
KW - Osteomalacia
KW - Pseudoxanthoma elasticum
KW - Rickets
KW - Vertebral fracture assessment
UR - http://www.scopus.com/inward/record.url?scp=85062874972&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2019.02.025
DO - 10.1016/j.bone.2019.02.025
M3 - Article
C2 - 30825650
AN - SCOPUS:85062874972
SN - 8756-3282
VL - 122
SP - 231
EP - 236
JO - Bone
JF - Bone
ER -