TY - JOUR
T1 - Nitric oxide increases arterial endotheial permeability through mediating VE-cadherin expression during arteriogenesis
AU - Yang, Baolin
AU - Cai, Baizhen
AU - Deng, Panyue
AU - Wu, Xiaoqiong
AU - Guan, Yinglu
AU - Zhang, Bin
AU - Cai, Weijun
AU - Schaper, Jutta
AU - Schaper, Wolfgang
N1 - Funding Information:
This work was partly supported by the grants from the National Natural Science Foundation of China (No: 81370248, 30971532 and 81301997) and the Shenghua Scholar Program of Central South University.
Publisher Copyright:
© 2015 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/7/2
Y1 - 2015/7/2
N2 - Macrophage invasion is an important event during arteriogenesis, but the underlying mechanism is still only partially understood. The present study tested the hypothesis that nitric oxide (NO) and VE-cadherin, two key mediators for vascular permeability, contribute to this event in a rat ischemic hindlimb model. In addition, the effect of NO on expression of VE-caherin and endothelial permeability was also studied in cultured HUVECs. We found that: 1) in normal arteriolar vessels (NAV), eNOS was moderately expressed in endothelial cells (EC) and iNOS was rarely detected. In contrast, in collateral vessels (CVs) induced by simple femoral artery ligation, both eNOS and iNOS were significantly upregulated (P<0.05). Induced iNOS was found mainly in smooth muscle cells, but also in other vascular cells and macrophages; 2) in NAV VE-cadherin was strongly expressed in EC. In CVs, VE-cadherin was significantly downregulated, with a discontinuous and punctate pattern. Administration of nitric oxide donor DETA NONOate (NONOate) further reduced the amounts of Ve-cadherin in CVs, whereas NO synthase inhibitor L-NAME inhibited downregulation of VE-cadherin in CVs; 3) in normal rats Evans blue extravasation (EBE) was low in the musculus gracilis, FITC-dextron leakage was not detected in the vascular wall and few macrophages were observed in perivascular space. In contrast, EBE was significantly increased in femoral artery ligation rats, FITC-dextron leakage and increased amounts of macrophages were detected in CVs, which were further enhanced by administration of NONOate, but inhibited by L-NAME supplement; 4) in vitro experiments confirmed that an increase in NO production reduced VE-cadherin expression, correlated with increases in the permeability of HUVECs. In conclusion, our data for the first time reveal the expression profile of VE-cadherin and alterations of vascular permeability in CVs, suggesting that NO-mediated VE-cadherin pathway may be one important mechanism responsible, at least in part, for macrophage invasion during arteriogenesis.
AB - Macrophage invasion is an important event during arteriogenesis, but the underlying mechanism is still only partially understood. The present study tested the hypothesis that nitric oxide (NO) and VE-cadherin, two key mediators for vascular permeability, contribute to this event in a rat ischemic hindlimb model. In addition, the effect of NO on expression of VE-caherin and endothelial permeability was also studied in cultured HUVECs. We found that: 1) in normal arteriolar vessels (NAV), eNOS was moderately expressed in endothelial cells (EC) and iNOS was rarely detected. In contrast, in collateral vessels (CVs) induced by simple femoral artery ligation, both eNOS and iNOS were significantly upregulated (P<0.05). Induced iNOS was found mainly in smooth muscle cells, but also in other vascular cells and macrophages; 2) in NAV VE-cadherin was strongly expressed in EC. In CVs, VE-cadherin was significantly downregulated, with a discontinuous and punctate pattern. Administration of nitric oxide donor DETA NONOate (NONOate) further reduced the amounts of Ve-cadherin in CVs, whereas NO synthase inhibitor L-NAME inhibited downregulation of VE-cadherin in CVs; 3) in normal rats Evans blue extravasation (EBE) was low in the musculus gracilis, FITC-dextron leakage was not detected in the vascular wall and few macrophages were observed in perivascular space. In contrast, EBE was significantly increased in femoral artery ligation rats, FITC-dextron leakage and increased amounts of macrophages were detected in CVs, which were further enhanced by administration of NONOate, but inhibited by L-NAME supplement; 4) in vitro experiments confirmed that an increase in NO production reduced VE-cadherin expression, correlated with increases in the permeability of HUVECs. In conclusion, our data for the first time reveal the expression profile of VE-cadherin and alterations of vascular permeability in CVs, suggesting that NO-mediated VE-cadherin pathway may be one important mechanism responsible, at least in part, for macrophage invasion during arteriogenesis.
UR - http://www.scopus.com/inward/record.url?scp=84940094758&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0127931
DO - 10.1371/journal.pone.0127931
M3 - Article
C2 - 26133549
AN - SCOPUS:84940094758
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 7
M1 - e0127931
ER -