TY - JOUR
T1 - New advances in amblyopia therapy II
T2 - Refractive therapies
AU - Kraus, Courtney L.
AU - Culican, Susan M.
N1 - Publisher Copyright:
© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
PY - 2018/12
Y1 - 2018/12
N2 - The treatment of anisometropic or ametropic amblyopia has traditionally enjoyed a high treatment success rate. Early initiation and consistent use of spectacle correction can completely resolve amblyopia in a majority of patients. For those with anisometropic amblyopia that fail to improve with glasses wear alone, patching or atropine penalisation can lead to equalisation of visual acuity. However, successful treatment requires full-time compliance with refractive correction and this can be a challenge for a patient population that often has one eye with good acuity without correction. Other barriers for a select population with high anisometropicor ametropic amblyopia include rejection of glasses for various reasons including discomfort, behavioural or sensory problems, postural issues and visually significant aniseikonia. When consistent wear of optical correction proves difficult and patching/atropine remains a major obstacle, surgical correction of refractive error has proven success in achieving vision improvement. Acting as a means to achieve spectacle independence or reducing the overall needed refractive correction, refractive surgery can offer a unique treatment option for this patient population. Laser surgery, phakic intraocular lenses and clear lens exchange are three approaches to altering the refractive state of the eye. Each has documented success in improving vision, particularly in populations where glasses wear has not been possible. Surgical correction of refractive error has a risk profile greater than that of more traditional therapies. However, its use in a specific population offers the opportunity for improving visual acuity in children who otherwise have poor outcomes with glasses and patching/atropine alone.
AB - The treatment of anisometropic or ametropic amblyopia has traditionally enjoyed a high treatment success rate. Early initiation and consistent use of spectacle correction can completely resolve amblyopia in a majority of patients. For those with anisometropic amblyopia that fail to improve with glasses wear alone, patching or atropine penalisation can lead to equalisation of visual acuity. However, successful treatment requires full-time compliance with refractive correction and this can be a challenge for a patient population that often has one eye with good acuity without correction. Other barriers for a select population with high anisometropicor ametropic amblyopia include rejection of glasses for various reasons including discomfort, behavioural or sensory problems, postural issues and visually significant aniseikonia. When consistent wear of optical correction proves difficult and patching/atropine remains a major obstacle, surgical correction of refractive error has proven success in achieving vision improvement. Acting as a means to achieve spectacle independence or reducing the overall needed refractive correction, refractive surgery can offer a unique treatment option for this patient population. Laser surgery, phakic intraocular lenses and clear lens exchange are three approaches to altering the refractive state of the eye. Each has documented success in improving vision, particularly in populations where glasses wear has not been possible. Surgical correction of refractive error has a risk profile greater than that of more traditional therapies. However, its use in a specific population offers the opportunity for improving visual acuity in children who otherwise have poor outcomes with glasses and patching/atropine alone.
KW - Child health (paediatrics)
KW - Treatment Surgery
KW - Vision
UR - http://www.scopus.com/inward/record.url?scp=85048438847&partnerID=8YFLogxK
U2 - 10.1136/bjophthalmol-2018-312173
DO - 10.1136/bjophthalmol-2018-312173
M3 - Article
C2 - 29871968
AN - SCOPUS:85048438847
SN - 0007-1161
VL - 102
SP - 1611
EP - 1614
JO - British Journal of Ophthalmology
JF - British Journal of Ophthalmology
IS - 12
ER -