TY - JOUR
T1 - Neutrophils & neutrophil serine proteases are increased in the spleens of estrogentreated C57BL/6 mice & several strains of spontaneous lupus-prone mice
AU - Dai, Rujuan
AU - Cowan, Catharine
AU - Heid, Bettina
AU - Khan, Deena
AU - Liang, Zhihong
AU - Pham, Christine T.N.
AU - Ahmed, S. Ansar
N1 - Publisher Copyright:
©2017 Dai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/2
Y1 - 2017/2
N2 - Estrogen, a natural immunomodulator, regulates the development and function of diverse immune cell types. There is now renewed attention on neutrophils and neutrophil serine proteases (NSPs) such as neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CG) in inflammation and autoimmunity. In this study, we found that although estrogen treatment significantly reduced total splenocytes number, it markedly increased the splenic neutrophil absolute numbers in estrogen-Treated C57BL/6 (B6) mice when compared to placebo controls. Concomitantly, the levels of NSPs and myeloperoxidase (MPO) were highly upregulated in the splenocytes from estrogen-Treated mice. Despite the critical role of NSPs in the regulation of non-infectious inflammation, by employing NE-/-/PR3-/-/CG-/-Triple knock out mice, we demonstrated that the absence of NSPs affected neither estrogen's ability to increase splenic neutrophils nor the induction of inflammatory mediators (IFNγ, IL-1β, IL-6, TNFα, MCP-1, and NO) from ex vivo activated splenocytes. Depletion of neutrophils in vitro in splenocytes with anti-Ly6G antibody also had no obvious effect on NSP expression or LPS-induced IFNγ and MCP-1. These data suggest that estrogen augments NSPs, which appears to be independent of enhancing ex vivo inflammatory responses. Since estrogen has been implicated in regulating several experimental autoimmune diseases, we extended our observations in estrogen-Treated B6 mice to spontaneous autoimmune-prone female MRL-lpr, B6-lpr and NZB/WF1 mice. There was a remarkable commonality with regards to the increase of neutrophils and concomitant increase of NSPs and MPO in the splenic cells of different strains of autoimmune-prone mice and estrogen-Treated B6 mice. Collectively, since NSPs and neutrophils are involved in diverse pro-inflammatory activities, these data suggest a potential pathologic implication of increased neutrophils and NSPs that merits further investigation.
AB - Estrogen, a natural immunomodulator, regulates the development and function of diverse immune cell types. There is now renewed attention on neutrophils and neutrophil serine proteases (NSPs) such as neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CG) in inflammation and autoimmunity. In this study, we found that although estrogen treatment significantly reduced total splenocytes number, it markedly increased the splenic neutrophil absolute numbers in estrogen-Treated C57BL/6 (B6) mice when compared to placebo controls. Concomitantly, the levels of NSPs and myeloperoxidase (MPO) were highly upregulated in the splenocytes from estrogen-Treated mice. Despite the critical role of NSPs in the regulation of non-infectious inflammation, by employing NE-/-/PR3-/-/CG-/-Triple knock out mice, we demonstrated that the absence of NSPs affected neither estrogen's ability to increase splenic neutrophils nor the induction of inflammatory mediators (IFNγ, IL-1β, IL-6, TNFα, MCP-1, and NO) from ex vivo activated splenocytes. Depletion of neutrophils in vitro in splenocytes with anti-Ly6G antibody also had no obvious effect on NSP expression or LPS-induced IFNγ and MCP-1. These data suggest that estrogen augments NSPs, which appears to be independent of enhancing ex vivo inflammatory responses. Since estrogen has been implicated in regulating several experimental autoimmune diseases, we extended our observations in estrogen-Treated B6 mice to spontaneous autoimmune-prone female MRL-lpr, B6-lpr and NZB/WF1 mice. There was a remarkable commonality with regards to the increase of neutrophils and concomitant increase of NSPs and MPO in the splenic cells of different strains of autoimmune-prone mice and estrogen-Treated B6 mice. Collectively, since NSPs and neutrophils are involved in diverse pro-inflammatory activities, these data suggest a potential pathologic implication of increased neutrophils and NSPs that merits further investigation.
UR - http://www.scopus.com/inward/record.url?scp=85012919691&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0172105
DO - 10.1371/journal.pone.0172105
M3 - Article
C2 - 28192517
AN - SCOPUS:85012919691
SN - 1932-6203
VL - 12
JO - PloS one
JF - PloS one
IS - 2
M1 - e0172105
ER -