TY - JOUR
T1 - Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo
AU - Yadav, Mahesh
AU - Louvet, Cedric
AU - Davini, Dan
AU - Gardner, James M.
AU - Martinez-Llordella, Marc
AU - Bailey-Bucktrout, Samantha
AU - Anthony, Bryan A.
AU - Sverdrup, Francis M.
AU - Head, Richard
AU - Kuster, Daniel J.
AU - Ruminski, Peter
AU - Weiss, David
AU - Von Schack, David
AU - Bluestone, Jeffrey A.
PY - 2012/9
Y1 - 2012/9
N2 - Foxp3+ CD4+ T helper cells called regulatory T (T reg) cells play a key role in controlling reactivity to self-antigens and onset of autoimmunity. T reg cells either arise in thymus and are called natural T reg (nT reg) cells or are generated in the periphery through induction of Foxp3 and are called inducible T reg (iT reg) cells. The relative contributions of iT reg cells and nT reg cells in peripheral tolerance remain unclear as a result of an inability to separate these two subsets of T reg cells. Using a combination of novel TCR transgenic mice with a defined self-antigen specificity and conventional mouse models, we demonstrate that a cell surface molecule, neuropilin-1 (Nrp-1), is expressed at high levels on nT reg cells and can be used to separate nT reg versus iT reg cells in certain physiological settings. In addition, iT reg cells generated through antigen delivery or converted under homeostatic conditions lack Nrp-1 expression. Nrp-1lo iT reg cells show similar suppressive activity to nT reg cells in controlling ongoing autoimmune responses under homeostatic conditions. In contrast, their activity might be compromised in certain lymphopenic settings. Collectively, our data show that Nrp-1 provides an excellent marker to distinguish distinct T reg subsets and will be useful in studying the role of nT reg versus iT reg cells in different disease settings.
AB - Foxp3+ CD4+ T helper cells called regulatory T (T reg) cells play a key role in controlling reactivity to self-antigens and onset of autoimmunity. T reg cells either arise in thymus and are called natural T reg (nT reg) cells or are generated in the periphery through induction of Foxp3 and are called inducible T reg (iT reg) cells. The relative contributions of iT reg cells and nT reg cells in peripheral tolerance remain unclear as a result of an inability to separate these two subsets of T reg cells. Using a combination of novel TCR transgenic mice with a defined self-antigen specificity and conventional mouse models, we demonstrate that a cell surface molecule, neuropilin-1 (Nrp-1), is expressed at high levels on nT reg cells and can be used to separate nT reg versus iT reg cells in certain physiological settings. In addition, iT reg cells generated through antigen delivery or converted under homeostatic conditions lack Nrp-1 expression. Nrp-1lo iT reg cells show similar suppressive activity to nT reg cells in controlling ongoing autoimmune responses under homeostatic conditions. In contrast, their activity might be compromised in certain lymphopenic settings. Collectively, our data show that Nrp-1 provides an excellent marker to distinguish distinct T reg subsets and will be useful in studying the role of nT reg versus iT reg cells in different disease settings.
UR - http://www.scopus.com/inward/record.url?scp=84867901322&partnerID=8YFLogxK
U2 - 10.1084/jem.20120822
DO - 10.1084/jem.20120822
M3 - Article
C2 - 22966003
AN - SCOPUS:84867901322
SN - 0022-1007
VL - 209
SP - 1713
EP - 1722
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
IS - 10
ER -