TY - JOUR
T1 - Neuropathic midfoot deformity
T2 - Associations with ankle and subtalar joint motion
AU - Sinacore, David R.
AU - Gutekunst, David J.
AU - Hastings, Mary K.
AU - Strube, Michael J.
AU - Bohnert, Kathryn L.
AU - Prior, Fred W.
AU - Johnson, Jeffrey E.
N1 - Funding Information:
Mary K Hastings PT, DPT was supported by NICHD K12 HD 05593. David J Gutekunst, PhD was supported by NICHD 5 T32 HD007434-19. Jeffrey E Johnson MD serves as Medical Director for Musculoskeletal Applications of Shockwave Therapy for the Midwest Stone Institute (MSI). He is a stockholder in Midwest Therapy, LLC, a subsidiary company of MSI.
Funding Information:
We acknowledge the efforts of Karen Lin, DPT and Kathryn L. Cutrera, DPT for their assistance with data basing and the technical assistance of Mr. Bruce A. Vendt, Ms. Mary Wolfsburger, and Ms. Joan Moulton, Electronic Radiology Laboratory for the Phillips ISiteW PACS software and calibration of radiographic measurements. Funded by NIH NIDDK R21 DK 079457; supported by Midwest Stone Institute, Diabetes Research and Training Center at Washington University (NIDDK P60 DK20579). This publication was made possible by the Washington University Institute of Clinical and Translational Sciences grant UL1 RR024992 from the National Center for Research Resources (NCRR)/ National Center for Advancing Translational Sciences (NCATS), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR/NCATS or NIH.
PY - 2013/3/25
Y1 - 2013/3/25
N2 - Background: Neuropathic deformities impair foot and ankle joint mobility, often leading to abnormal stresses and impact forces. The purpose of our study was to determine differences in radiographic measures of hind foot alignment and ankle joint and subtalar joint motion in participants with and without neuropathic midfoot deformities and to determine the relationships between radiographic measures of hind foot alignment to ankle and subtalar joint motion in participants with and without neuropathic midfoot deformities. Methods: Sixty participants were studied in three groups. Forty participants had diabetes mellitus (DM) and peripheral neuropathy (PN) with 20 participants having neuropathic midfoot deformity due to Charcot neuroarthropathy (CN), while 20 participants did not have deformity. Participants with diabetes and neuropathy with and without deformity were compared to 20 young control participants without DM, PN or deformity. Talar declination and calcaneal inclination angles were assessed on lateral view weight bearing radiograph. Ankle dorsiflexion, plantar flexion and subtalar inversion and eversion were assessed by goniometry. Results: Talar declination angle averaged 34±9, 26±4 and 23±3 degrees in participants with deformity, without deformity and young control participants, respectively (p< 0.010). Calcaneal inclination angle averaged 11±10, 18±9 and 21±4 degrees, respectively (p< 0.010). Ankle plantar flexion motion averaged 23±11, 38±10 and 47±7 degrees (p<0.010). The association between talar declination and calcaneal inclination angles with ankle plantar flexion range of motion is strongest in participants with neuropathic midfoot deformity. Participants with talonavicular and calcaneocuboid dislocations result in the most severe restrictions in ankle joint plantar flexion and subtalar joint inversion motions. Conclusions: An increasing talar declination angle and decreasing calcaneal inclination angle is associated with decreases in ankle joint plantar flexion motion in individuals with neuropathic midfoot deformity due to CN that may contribute to excessive stresses and ultimately plantar ulceration of the midfoot.
AB - Background: Neuropathic deformities impair foot and ankle joint mobility, often leading to abnormal stresses and impact forces. The purpose of our study was to determine differences in radiographic measures of hind foot alignment and ankle joint and subtalar joint motion in participants with and without neuropathic midfoot deformities and to determine the relationships between radiographic measures of hind foot alignment to ankle and subtalar joint motion in participants with and without neuropathic midfoot deformities. Methods: Sixty participants were studied in three groups. Forty participants had diabetes mellitus (DM) and peripheral neuropathy (PN) with 20 participants having neuropathic midfoot deformity due to Charcot neuroarthropathy (CN), while 20 participants did not have deformity. Participants with diabetes and neuropathy with and without deformity were compared to 20 young control participants without DM, PN or deformity. Talar declination and calcaneal inclination angles were assessed on lateral view weight bearing radiograph. Ankle dorsiflexion, plantar flexion and subtalar inversion and eversion were assessed by goniometry. Results: Talar declination angle averaged 34±9, 26±4 and 23±3 degrees in participants with deformity, without deformity and young control participants, respectively (p< 0.010). Calcaneal inclination angle averaged 11±10, 18±9 and 21±4 degrees, respectively (p< 0.010). Ankle plantar flexion motion averaged 23±11, 38±10 and 47±7 degrees (p<0.010). The association between talar declination and calcaneal inclination angles with ankle plantar flexion range of motion is strongest in participants with neuropathic midfoot deformity. Participants with talonavicular and calcaneocuboid dislocations result in the most severe restrictions in ankle joint plantar flexion and subtalar joint inversion motions. Conclusions: An increasing talar declination angle and decreasing calcaneal inclination angle is associated with decreases in ankle joint plantar flexion motion in individuals with neuropathic midfoot deformity due to CN that may contribute to excessive stresses and ultimately plantar ulceration of the midfoot.
KW - Ankle and foot joint goniometry
KW - Deformity
KW - Foot alignment
KW - Limited joint mobility
UR - http://www.scopus.com/inward/record.url?scp=84875883934&partnerID=8YFLogxK
U2 - 10.1186/1757-1146-6-11
DO - 10.1186/1757-1146-6-11
M3 - Article
C2 - 23531372
AN - SCOPUS:84875883934
SN - 1757-1146
VL - 6
JO - Journal of Foot and Ankle Research
JF - Journal of Foot and Ankle Research
IS - 1
M1 - 11
ER -