TY - JOUR
T1 - Neurofibromatosis-1 regulates mTOR-mediated astrocyte growth and glioma formation in a TSC/Rheb-independent manner
AU - Banerjee, Sutapa
AU - Crouse, Nikkilina R.
AU - Emnett, Ryan J.
AU - Gianino, Scott M.
AU - Gutmann, David H.
PY - 2011/10/20
Y1 - 2011/10/20
N2 - Converging evidence from the analysis of human brain tumors and genetically engineered mice has revealed that the mammalian target of rapamycin (mTOR) pathway is a central regulator of glial and glioma cell growth. In this regard, mutational inactivation of neurofibromatosis-1 (NF1), tuberous sclerosis complex (TSC), and PTEN genes is associated with glioma formation, such that pharmacologic inhibition of mTOR signaling results in attenuated tumor growth. This shared dependence on mTOR suggests that PTEN and NF1 (neurofibromin) glial growth regulation requires TSC/Rheb (Ras homolog enriched in brain) control of mTOR function. In this report, we use a combination of genetic silencing in vitro and conditional mouse transgenesis approaches in vivo to demonstrate that neurofibromin regulates astrocyte cell growth and glioma formation in a TSC/Rheb-independent fashion. First, we show that Nf1 or Pten inactivation, but not Tsc1 loss or Rheb overexpression, increases astrocyte cell growth in vitro. Second, Nf1-deficient increased mTOR signaling and astrocyte hyperproliferation is unaffected by Rheb shRNA silencing. Third, conditional Tsc1 inactivation or Rheb overexpression in glial progenitors of Nf 1+/- mice does not lead to glioma formation. Collectively, these findings establish TSC/Rheb-independent mechanisms for mTOR-dependent glial cell growth control and gliomagenesis relevant to the design of therapies for individuals with glioma.
AB - Converging evidence from the analysis of human brain tumors and genetically engineered mice has revealed that the mammalian target of rapamycin (mTOR) pathway is a central regulator of glial and glioma cell growth. In this regard, mutational inactivation of neurofibromatosis-1 (NF1), tuberous sclerosis complex (TSC), and PTEN genes is associated with glioma formation, such that pharmacologic inhibition of mTOR signaling results in attenuated tumor growth. This shared dependence on mTOR suggests that PTEN and NF1 (neurofibromin) glial growth regulation requires TSC/Rheb (Ras homolog enriched in brain) control of mTOR function. In this report, we use a combination of genetic silencing in vitro and conditional mouse transgenesis approaches in vivo to demonstrate that neurofibromin regulates astrocyte cell growth and glioma formation in a TSC/Rheb-independent fashion. First, we show that Nf1 or Pten inactivation, but not Tsc1 loss or Rheb overexpression, increases astrocyte cell growth in vitro. Second, Nf1-deficient increased mTOR signaling and astrocyte hyperproliferation is unaffected by Rheb shRNA silencing. Third, conditional Tsc1 inactivation or Rheb overexpression in glial progenitors of Nf 1+/- mice does not lead to glioma formation. Collectively, these findings establish TSC/Rheb-independent mechanisms for mTOR-dependent glial cell growth control and gliomagenesis relevant to the design of therapies for individuals with glioma.
KW - Astrocytoma
KW - Glia
KW - Optic glioma
UR - http://www.scopus.com/inward/record.url?scp=80053154349&partnerID=8YFLogxK
U2 - 10.1073/pnas.1019012108
DO - 10.1073/pnas.1019012108
M3 - Article
C2 - 21896734
AN - SCOPUS:80053154349
SN - 0027-8424
VL - 108
SP - 15996
EP - 16001
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 38
ER -