TY - JOUR
T1 - Neuroactive steroids alphaxalone and CDNC24 are effective hypnotics and potentiators of GABAA currents, but are not neurotoxic to the developing rat brain
AU - Tesic, Vesna
AU - Joksimovic, Srdjan M.
AU - Quillinan, Nidia
AU - Krishnan, Kathiresan
AU - Covey, Douglas F.
AU - Todorovic, Slobodan M.
AU - Jevtovic-Todorovic, Vesna
N1 - Publisher Copyright:
© 2020 British Journal of Anaesthesia
PY - 2020/5
Y1 - 2020/5
N2 - Background: The most currently used general anaesthetics are potent potentiators of γ-aminobutyric acid A (GABAA) receptors and are invariably neurotoxic during the early stages of brain development in preclinical animal models. As causality between GABAA potentiation and anaesthetic-induced developmental neurotoxicity has not been established, the question remains whether GABAergic activity is crucial for promoting/enhancing neurotoxicity. Using the neurosteroid analogue, (3α,5α)-3-hydroxy-13,24-cyclo-18,21-dinorchol-22-en-24-ol (CDNC24), which potentiates recombinant GABAA receptors, we examined whether this potentiation is the driving force in inducing neurotoxicity during development. Methods: The neurotoxic potential of CDNC24 was examined vis-à-vis propofol (2,6-diisopropylphenol) and alphaxalone (5α-pregnan-3α-ol-11,20-dione) at the peak of rat synaptogenesis. In addition to the morphological neurotoxicity studies of the subiculum and medial prefrontal cortex (mPFC), we assessed the extra-, pre-, and postsynaptic effects of these agents on GABAergic neurotransmission in acute subicular slices from rat pups. Results: CDNC24, like alphaxalone and propofol, caused dose-dependent hypnosis in vivo, with a higher therapeutic index. CDNC24 and alphaxalone, unlike propofol, did not cause developmental neuroapoptosis in the subiculum and mPFC. Propofol potentiated post- and extrasynaptic GABAA currents as evidenced by increased spontaneous inhibitory postsynaptic current (sIPSC) decay time and prominent tonic currents, respectively. CDNC24 and alphaxalone had a similar postsynaptic effect, but also displayed a strong presynaptic effect as evidenced by decreased frequency of sIPSCs and induced moderate tonic currents. Conclusions: The lack of neurotoxicity of CDNC24 and alphaxalone may be at least partly related to suppression of presynaptic GABA release in the developing brain.
AB - Background: The most currently used general anaesthetics are potent potentiators of γ-aminobutyric acid A (GABAA) receptors and are invariably neurotoxic during the early stages of brain development in preclinical animal models. As causality between GABAA potentiation and anaesthetic-induced developmental neurotoxicity has not been established, the question remains whether GABAergic activity is crucial for promoting/enhancing neurotoxicity. Using the neurosteroid analogue, (3α,5α)-3-hydroxy-13,24-cyclo-18,21-dinorchol-22-en-24-ol (CDNC24), which potentiates recombinant GABAA receptors, we examined whether this potentiation is the driving force in inducing neurotoxicity during development. Methods: The neurotoxic potential of CDNC24 was examined vis-à-vis propofol (2,6-diisopropylphenol) and alphaxalone (5α-pregnan-3α-ol-11,20-dione) at the peak of rat synaptogenesis. In addition to the morphological neurotoxicity studies of the subiculum and medial prefrontal cortex (mPFC), we assessed the extra-, pre-, and postsynaptic effects of these agents on GABAergic neurotransmission in acute subicular slices from rat pups. Results: CDNC24, like alphaxalone and propofol, caused dose-dependent hypnosis in vivo, with a higher therapeutic index. CDNC24 and alphaxalone, unlike propofol, did not cause developmental neuroapoptosis in the subiculum and mPFC. Propofol potentiated post- and extrasynaptic GABAA currents as evidenced by increased spontaneous inhibitory postsynaptic current (sIPSC) decay time and prominent tonic currents, respectively. CDNC24 and alphaxalone had a similar postsynaptic effect, but also displayed a strong presynaptic effect as evidenced by decreased frequency of sIPSCs and induced moderate tonic currents. Conclusions: The lack of neurotoxicity of CDNC24 and alphaxalone may be at least partly related to suppression of presynaptic GABA release in the developing brain.
KW - general anaesthetic
KW - prefrontal cortex
KW - presynaptic
KW - subiculum
KW - synaptic transmission
KW - synaptogenesis
UR - http://www.scopus.com/inward/record.url?scp=85081238964&partnerID=8YFLogxK
U2 - 10.1016/j.bja.2020.01.013
DO - 10.1016/j.bja.2020.01.013
M3 - Article
C2 - 32151384
AN - SCOPUS:85081238964
SN - 0007-0912
VL - 124
SP - 603
EP - 613
JO - British journal of anaesthesia
JF - British journal of anaesthesia
IS - 5
ER -