Neural adaptation of epidural electrocorticographic (EECoG) signals during closed-loop brain computer interface (BCI) tasks

Adam G. Rouse, Daniel W. Moran

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

39 Scopus citations

Abstract

Invasive BCI studies have classically relied on actual or imagined movements to train their neural decoding algorithms. In this study, non-human primates were required to perform a 2D BCI task using epidural microECoG recordings. The decoding weights and cortical locations of the electrodes used for control were randomly chosen and fixed for a series of daily recording sessions for five days. Over a period of one week, the subjects learned to accurately control a 2D computer cursor through neural adaptation of microECoG signals over "cortical control columns" having diameters on a the order of a few mm. These results suggest that the spatial resolution of microECoG recordings can be increased via neural plasticity.

Original languageEnglish
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages5514-5517
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period09/2/0909/6/09

Fingerprint

Dive into the research topics of 'Neural adaptation of epidural electrocorticographic (EECoG) signals during closed-loop brain computer interface (BCI) tasks'. Together they form a unique fingerprint.

Cite this