Network Restructuring Control for Conic Invariance with Application to Neural Networks

Matthew F. Singh, Shinung Ching

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Recent advances in the study of artificial and biological neural networks support the power of dynamic representations-computing with information stored as nontrivial limit-sets rather than fixed-point attractors. Understanding and manipulating these computations in nonlinear networks requires a theory of control for abstract objective functions. Towards this end, we consider two properties of limit-sets: their topological dimension and orientation (covariance) in phase space and combine these abstract properties into a single well-defined objective: conic control-invariant sets in the derivative space (i.e., the vector field). Real-world applications, such as neural-medicine, constrain which control laws are feasible with less-invasive controllers being preferable. To this end, we derive a feedback control-law for conic invariance which corresponds to constrained restructuring of the network connections as might occur with pharmacological intervention (as opposed to a physically separate control unit). We demonstrate the ease and efficacy of the technique in controlling the orientation and dimension of limit sets in high-dimensional neural networks.

Original languageEnglish
Title of host publication2018 IEEE Conference on Decision and Control, CDC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2704-2709
Number of pages6
ISBN (Electronic)9781538613955
DOIs
StatePublished - Jul 2 2018
Event57th IEEE Conference on Decision and Control, CDC 2018 - Miami, United States
Duration: Dec 17 2018Dec 19 2018

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2018-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference57th IEEE Conference on Decision and Control, CDC 2018
Country/TerritoryUnited States
CityMiami
Period12/17/1812/19/18

Fingerprint

Dive into the research topics of 'Network Restructuring Control for Conic Invariance with Application to Neural Networks'. Together they form a unique fingerprint.

Cite this