Abstract

Behavioral inhibition (BI), an early-life temperament characterized by vigilant responses to novelty, is a risk factor for anxiety disorders. In this study, we investigated whether differences in neonatal brain responses to infrequent auditory stimuli relate to children’s BI at 1 year of age. Using functional magnetic resonance imaging (fMRI), we collected blood-oxygen-level-dependent (BOLD) data from N=45 full-term, sleeping neonates during an adapted auditory oddball paradigm and measured BI from n = 27 of these children 1 year later using an observational assessment. Whole-brain analyses corrected for multiple comparisons identified 46 neonatal brain regions producing novelty-evokedBOLD responses associatedwith children’s BI scores at 1 year of age. More than half of these regions (n = 24, 52%) were in prefrontal cortex, falling primarily within regions of the default mode or frontoparietal networks or in ventromedial/orbitofrontal regions without network assignments. Hierarchical clustering of the regions based on their patterns of association with BI resulted in two groups with distinct anatomical, network, and response-timing profiles. The first group, located primarily in subcortical and temporal regions, tended to produce larger early oddball responses among infants with lower subsequent BI. The second group, located primarily in prefrontal cortex, produced larger early oddball responses among infants with higher subsequent BI. These results provide preliminary insights into brain regions engaged by novelty in infants that may relate to later BI. The findings may inform understanding of anxiety disorders and guide future research.

Original languageEnglish
JournalDevelopmental Psychology
DOIs
StateAccepted/In press - 2023

Keywords

  • anxiety
  • auditory
  • behavioral inhibition
  • functional magnetic resonance imaging
  • neonate

Fingerprint

Dive into the research topics of 'Neonatal Neural Responses to Novelty Related to Behavioral Inhibition at 1 Year'. Together they form a unique fingerprint.

Cite this