Abstract

BACKGROUND: Accurate estimation of surgical transfusion risk is important for many aspects of surgical planning, yet few methods for estimating are available for estimating such risk. There is a need for reliable validated methods for transfusion risk stratification to support effective perioperative planning and resource stewardship. STUDY DESIGN: This study was conducted using the American College of Surgeons NSQIP datafile from 2019. S-PATH performance was evaluated at each contributing hospital, with and without hospital-specific model tuning. Linear regression was used to assess the relationship between hospital characteristics and area under the receiver operating characteristic (AUROC) curve. RESULTS: A total of 1,000,927 surgical cases from 414 hospitals were evaluated. Aggregate AUROC was 0.910 (95% CI 0.904 to 0.916) without model tuning and 0.925 (95% CI 0.919 to 0.931) with model tuning. AUROC varied across individual hospitals (median 0.900, interquartile range 0.849 to 0.944), but no statistically significant relationships were found between hospital-level characteristics studied and model AUROC. CONCLUSIONS: S-PATH demonstrated excellent discriminative performance, although there was variation across hospitals that was not well-explained by hospital-level characteristics. These results highlight the S-PATH's viability as a generalizable surgical transfusion risk prediction tool.

Original languageEnglish
Pages (from-to)99-105
Number of pages7
JournalJournal of the American College of Surgeons
Volume238
Issue number1
DOIs
StatePublished - Jan 1 2024

Fingerprint

Dive into the research topics of 'National Multi-Institutional Validation of a Surgical Transfusion Risk Prediction Model'. Together they form a unique fingerprint.

Cite this