TY - JOUR
T1 - Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis
AU - Nahrendorf, Matthias
AU - Zhang, Hanwen
AU - Hembrador, Sheena
AU - Panizzi, Peter
AU - Sosnovik, David E.
AU - Aikawa, Elena
AU - Libby, Peter
AU - Swirski, Filip K.
AU - Weissleder, Ralph
PY - 2008/1
Y1 - 2008/1
N2 - BACKGROUND - Macrophages participate centrally in atherosclerosis, and macrophage markers (eg, CD68, MAC-3) correlate well with lesion severity and therapeutic modulation. On the basis of the avidity of lesional macrophages for polysaccharide-containing supramolecular structures such as nanoparticles, we have developed a new positron emission tomography (PET) agent with optimized pharmacokinetics to allow in vivo imaging at tracer concentrations. METHODS AND RESULTS - A dextranated and DTPA-modified magnetofluorescent 20-nm nanoparticle was labeled with the PET tracer Cu (1 mCi/0.1 mg nanoparticles) to yield a PET, magnetic resonance, and optically detectable imaging agent. Peak PET activity 24 hours after intravenous injection into mice deficient in apolipoprotein E with experimental atherosclerosis mapped to areas of high plaque load identified by computed tomography such as the aortic root and arch and correlated with magnetic resonance and optical imaging. Accumulated dose in apolipoprotein E-deficient aortas determined by gamma counting was 260% and in carotids 392% of respective wild-type organs (P<0.05 both). Autoradiography of aortas demonstrated uptake of the agent into macrophage-rich atheromata identified by Oil Red O staining of lipid deposits. The novel nanoagent accumulated predominantly in macrophages as determined by fluorescence microscopy and flow cytometry of cells dissociated from aortas. CONCLUSIONS - This report establishes the capability of a novel trimodality nanoparticle to directly detect macrophages in atherosclerotic plaques. Advantages include improved sensitivity; direct correlation of PET signal with an established biomarker (CD68); ability to readily quantify the PET signal, perform whole-body vascular surveys, and spatially localize and follow the trireporter by microscopy; and clinical translatability of the agent given similarities to magnetic resonance imaging probes in clinical trials.
AB - BACKGROUND - Macrophages participate centrally in atherosclerosis, and macrophage markers (eg, CD68, MAC-3) correlate well with lesion severity and therapeutic modulation. On the basis of the avidity of lesional macrophages for polysaccharide-containing supramolecular structures such as nanoparticles, we have developed a new positron emission tomography (PET) agent with optimized pharmacokinetics to allow in vivo imaging at tracer concentrations. METHODS AND RESULTS - A dextranated and DTPA-modified magnetofluorescent 20-nm nanoparticle was labeled with the PET tracer Cu (1 mCi/0.1 mg nanoparticles) to yield a PET, magnetic resonance, and optically detectable imaging agent. Peak PET activity 24 hours after intravenous injection into mice deficient in apolipoprotein E with experimental atherosclerosis mapped to areas of high plaque load identified by computed tomography such as the aortic root and arch and correlated with magnetic resonance and optical imaging. Accumulated dose in apolipoprotein E-deficient aortas determined by gamma counting was 260% and in carotids 392% of respective wild-type organs (P<0.05 both). Autoradiography of aortas demonstrated uptake of the agent into macrophage-rich atheromata identified by Oil Red O staining of lipid deposits. The novel nanoagent accumulated predominantly in macrophages as determined by fluorescence microscopy and flow cytometry of cells dissociated from aortas. CONCLUSIONS - This report establishes the capability of a novel trimodality nanoparticle to directly detect macrophages in atherosclerotic plaques. Advantages include improved sensitivity; direct correlation of PET signal with an established biomarker (CD68); ability to readily quantify the PET signal, perform whole-body vascular surveys, and spatially localize and follow the trireporter by microscopy; and clinical translatability of the agent given similarities to magnetic resonance imaging probes in clinical trials.
KW - Atherosclerosis
KW - Imaging
KW - Inflammation
KW - Nanoparticles
KW - Positron-emission tomography
UR - http://www.scopus.com/inward/record.url?scp=38349158417&partnerID=8YFLogxK
U2 - 10.1161/CIRCULATIONAHA.107.741181
DO - 10.1161/CIRCULATIONAHA.107.741181
M3 - Article
C2 - 18158358
AN - SCOPUS:38349158417
SN - 0009-7322
VL - 117
SP - 379
EP - 387
JO - Circulation
JF - Circulation
IS - 3
ER -