Myocardial Blood Flow and Inflammatory Cardiac Sarcoidosis

Matthew J. Kruse, Lara Kovell, Edward K. Kasper, Martin G. Pomper, David R. Moller, Lilja Solnes, Edward S. Chen, Thomas H. Schindler

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


Objectives This study sought to evaluate the effects of inflammatory sarcoid disease on coronary circulatory function and the response to immune-suppressive treatment. Background Although positron emission tomography assessment of myocardial inflammation is increasingly applied to identify active cardiac sarcoidosis, its effect on coronary flow and immune-suppressive treatment remains to be characterized. Methods Thirty-two individuals, who were referred for positron emission tomography/computed tomography, were evaluated for known or suspected cardiac sarcoidosis applying 18F-fluorodeoxyglucose to determine inflammation and 13N-ammonia to assess for perfusion deficits following a high-fat/low-carbohydrate diet and fasting state >12 h to suppress myocardial glucose uptake. Inflammation was quantified with standardized uptake value and regional myocardial blood flow at rest and during regadenoson-stimulated hyperemia was determined in ml/g/min. Positron emission tomography studies were repeated in 18 cases with a median follow-up of 2.5 years (interquartile range [IQR]:1.3 to 3.4 years). Results Twenty-five exams had normal perfusion but evidence of regional inflammation (group 1), and 21 exams presented a regional perfusion deficit associated with inflammation (group 2). Median myocardial blood flow did not differ between inflamed and noninflamed myocardium in both groups (0.86 ml/g/min [IQR: 0.66 to 1.11 ml/g/min] vs. 0.83 ml/g/min [IQR: 0.64 to 1.12 ml/g/min] and 0.74 ml/g/min [IQR: 0.60 to 0.93 ml/g/min] vs. 0.77 ml/g/min [IQR: 0.59 to 0.95 ml/g/min], respectively). As regards median hyperemic myocardial blood flows, they were significantly lower in the inflamed than in the remote regions in group 1 and 2 (2.31 ml/g/min [IQR: 1.81 to 2.95 ml/g/min] vs. 2.70 ml/g/min [IQR: 2.07 to 3.30 ml/g/min] and 1.61 ml/g/min [IQR: 1.17 to 2.18 ml/g/min] vs. 1.94 ml/g/min [IQR: 1.49 to 2.39 ml/g/min]; p < 0.001, respectively). Immune-suppression–mediated decrease in inflammation was associated with preserved myocardial flow reserve (MFR) at follow-up, whereas MFR significantly worsened in regions without changes or even increases in inflammation (median ΔMFR: 0.07 [IQR: –0.29 to 0.45] vs. –0.24 [IQR: –0.84 to 0.21]; p < 0.001). There was an inverse correlation between pronounced alterations in myocardial inflammation (Δ regional myocardial volume with standardized uptake value >4.1) and ΔMFR (r = –0.47; p = 0.048). Conclusions Sarcoid-mediated myocardial inflammation is associated with a regional impairment of coronary circulatory function. The association between immune-suppressive treatment-related alterations in myocardial inflammation and changes in coronary vasodilator capacity suggests direct adverse effect of inflammation on coronary circulatory function in cardiac sarcoidosis.

Original languageEnglish
Pages (from-to)157-167
Number of pages11
JournalJACC: Cardiovascular Imaging
Issue number2
StatePublished - Feb 1 2017


  • blood flow
  • circulation
  • inflammation
  • microvascular function
  • myocardial flow reserve
  • myocardial perfusion
  • positron emission tomography
  • sarcoid disease


Dive into the research topics of 'Myocardial Blood Flow and Inflammatory Cardiac Sarcoidosis'. Together they form a unique fingerprint.

Cite this