Abstract

Current models of B lymphocyte biology posit that B cells continuously recirculate between lymphoid organs, without accumulating in peripheral healthy tissues. Nevertheless, B lymphocytes are one of the most prevalent leukocyte populations in the naive murine heart. To investigate this apparent inconsistency in the literature, we conducted a systematic analysis of myocardial B cell ontogeny, trafficking dynamics, histology, and gene expression patterns. We found that myocardial B cells represent a subpopulation of circulating B cells that make close contact with the microvascular endothelium of the heart and arrest their transit as they pass through the heart. The vast majority (>95%) of myocardial B cells remain intravascular, whereas few (<5%) myocardial B cells cross the endothelium into myocardial tissue. Analyses of mice with B cell deficiency or depletion indicated that B cells modulate the myocardial leukocyte pool composition. Analysis of B cell–deficient animals suggested that B cells modulate myocardial growth and contractility. These results transform our current understanding of B cell recirculation in the naive state and reveal a previously unknown relationship between B cells and myocardial physiology. Further work will be needed to assess the relevance of these findings to other organs.

Original languageEnglish
Article numbere134700
JournalJCI Insight
Volume5
Issue number3
DOIs
StatePublished - Feb 13 2020

Fingerprint

Dive into the research topics of 'Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart'. Together they form a unique fingerprint.

Cite this