TY - JOUR
T1 - Muscle loading is necessary for the formation of a functional tendon enthesis
AU - Schwartz, A. G.
AU - Lipner, J. H.
AU - Pasteris, J. D.
AU - Genin, G. M.
AU - Thomopoulos, S.
N1 - Funding Information:
The authors would like to thank Bill Coleman and Marlene Scott for assistance in histology preparation. This study was supported by the National Institutes of Health ( AR055580 , P30AR057237 , and T32AR060719 ).
PY - 2013/7
Y1 - 2013/7
N2 - Muscle forces are essential for skeletal patterning during development. Eliminating muscle forces, e.g., through paralysis, leads to bone and joint deformities. Botulinum toxin (BtxA)-induced paralysis of mouse rotator cuffs throughout postnatal development closely mimics neonatal brachial plexus palsy, a significant clinical condition in infants. In these mice, the tendon-to-bone attachment (i.e., the tendon enthesis) presents defects in mineral accumulation and fibrocartilage formation, presumably impairing the function of the tissue. The objective of the current study was to investigate the functional consequences of muscle unloading using BtxA on the developing supraspinatus tendon enthesis. We found that the maximum endurable load and stiffness of the supraspinatus tendon attachment decreased after four and eight weeks of post-natal BtxA-muscle unloading relative to controls. Tendon cross-sectional area was not significantly reduced by BtxA-unloading, while, strength, modulus, and toughness were decreased in the BtxA-unloaded group compared to controls, indicating a decrease in tissue quality. Polarized-light microscopy and Raman microprobe analysis were used to determine collagen fiber alignment and mineral characteristics, respectively, in the tendon enthesis that might contribute to the reduced biomechanical performance in BtxA-unloaded shoulders. Collagen fiber alignment was significantly reduced in BtxA-unloaded shoulders. The mineral-to-matrix ratio in mineralized fibrocartilage was not affected by loading. However, the crystallographic atomic order of the hydroxylapatite phase (a measure of crystallinity) was reduced and the amount of carbonate (substituting for phosphate) in the hydroxylapatite crystals was increased. Taken together, these micrometer-scale structural and compositional changes partly explain the observed decreases in the mechanical functionality of the tendon enthesis in the absence of muscle loading.
AB - Muscle forces are essential for skeletal patterning during development. Eliminating muscle forces, e.g., through paralysis, leads to bone and joint deformities. Botulinum toxin (BtxA)-induced paralysis of mouse rotator cuffs throughout postnatal development closely mimics neonatal brachial plexus palsy, a significant clinical condition in infants. In these mice, the tendon-to-bone attachment (i.e., the tendon enthesis) presents defects in mineral accumulation and fibrocartilage formation, presumably impairing the function of the tissue. The objective of the current study was to investigate the functional consequences of muscle unloading using BtxA on the developing supraspinatus tendon enthesis. We found that the maximum endurable load and stiffness of the supraspinatus tendon attachment decreased after four and eight weeks of post-natal BtxA-muscle unloading relative to controls. Tendon cross-sectional area was not significantly reduced by BtxA-unloading, while, strength, modulus, and toughness were decreased in the BtxA-unloaded group compared to controls, indicating a decrease in tissue quality. Polarized-light microscopy and Raman microprobe analysis were used to determine collagen fiber alignment and mineral characteristics, respectively, in the tendon enthesis that might contribute to the reduced biomechanical performance in BtxA-unloaded shoulders. Collagen fiber alignment was significantly reduced in BtxA-unloaded shoulders. The mineral-to-matrix ratio in mineralized fibrocartilage was not affected by loading. However, the crystallographic atomic order of the hydroxylapatite phase (a measure of crystallinity) was reduced and the amount of carbonate (substituting for phosphate) in the hydroxylapatite crystals was increased. Taken together, these micrometer-scale structural and compositional changes partly explain the observed decreases in the mechanical functionality of the tendon enthesis in the absence of muscle loading.
KW - Biomechanics
KW - Biomineralization
KW - Botulinum toxin A
KW - Mechanobiology
KW - Postnatal development
KW - Tendon-to-bone insertion
UR - http://www.scopus.com/inward/record.url?scp=84876380898&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2013.03.010
DO - 10.1016/j.bone.2013.03.010
M3 - Article
C2 - 23542869
AN - SCOPUS:84876380898
SN - 8756-3282
VL - 55
SP - 44
EP - 51
JO - Bone
JF - Bone
IS - 1
ER -