TY - JOUR
T1 - Murine Sall1 represses transcription by recruiting a histone deacetylase complex
AU - Kiefer, Susan Mc Leskey
AU - McDill, Bradley W.
AU - Yang, Jing
AU - Rauchman, Michael
PY - 2002/4/26
Y1 - 2002/4/26
N2 - The multi-zinc finger proteins of the Sal family regulate organogenesis. Genetic evidence from Drosophila has shown that spalt (sal) can alter gene expression in a cell autonomous fashion, but Sal proteins have never been directly analyzed for their ability to activate or repress transcription. In this report, we show that a member of the Sal family, mouse Sall1, is a potent transcriptional repressor. When fused to a heterologous DNA-binding domain, Sall1 represses transcription of a luciferase reporter by over 100-fold. Expression of the N terminus alone is sufficient for dose-responsive repression that, as shown by deletion analysis, requires the extreme N-terminal amino acids of the protein. The N terminus of Sall1 can repress at both short and long range relative to the promoter, and treatment with the histone deacetylase (HDAC) inhibitor, trichostatin A, alleviates repression by 3-fold. The same regions of the protein that are required for repression physically interact with components of chromatin remodeling complexes, HDAC1, HDAC2, RbAp46/48, MTA-1, and MTA-2. Finally, we demonstrate that Sall1 is localized to discrete nuclear foci and this localization depends on the N-terminal repression domain. Together, these results suggest that the N terminus of mouse Sall1 can recruit HDAC complexes to mediate transcriptional repression.
AB - The multi-zinc finger proteins of the Sal family regulate organogenesis. Genetic evidence from Drosophila has shown that spalt (sal) can alter gene expression in a cell autonomous fashion, but Sal proteins have never been directly analyzed for their ability to activate or repress transcription. In this report, we show that a member of the Sal family, mouse Sall1, is a potent transcriptional repressor. When fused to a heterologous DNA-binding domain, Sall1 represses transcription of a luciferase reporter by over 100-fold. Expression of the N terminus alone is sufficient for dose-responsive repression that, as shown by deletion analysis, requires the extreme N-terminal amino acids of the protein. The N terminus of Sall1 can repress at both short and long range relative to the promoter, and treatment with the histone deacetylase (HDAC) inhibitor, trichostatin A, alleviates repression by 3-fold. The same regions of the protein that are required for repression physically interact with components of chromatin remodeling complexes, HDAC1, HDAC2, RbAp46/48, MTA-1, and MTA-2. Finally, we demonstrate that Sall1 is localized to discrete nuclear foci and this localization depends on the N-terminal repression domain. Together, these results suggest that the N terminus of mouse Sall1 can recruit HDAC complexes to mediate transcriptional repression.
UR - http://www.scopus.com/inward/record.url?scp=0037177849&partnerID=8YFLogxK
U2 - 10.1074/jbc.M200052200
DO - 10.1074/jbc.M200052200
M3 - Article
C2 - 11836251
AN - SCOPUS:0037177849
SN - 0021-9258
VL - 277
SP - 14869
EP - 14876
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 17
ER -