TY - JOUR
T1 - Multiple system atrophy with amyloid-β-predominant Alzheimer's disease neuropathologic change
AU - Kon, Tomoya
AU - Ichimata, Shojiro
AU - Di Luca, Daniel G.
AU - Martinez-Valbuena, Ivan
AU - Kim, Ain
AU - Yoshida, Koji
AU - Alruwaita, Abdullah A.
AU - Kleiner, Galit
AU - Strafella, Antonio P.
AU - Forrest, Shelley L.
AU - Sato, Christine
AU - Rogaeva, Ekaterina
AU - Fox, Susan H.
AU - Lang, Anthony E.
AU - Kovacs, Gabor G.
N1 - Publisher Copyright:
© 2024 The Author(s).
PY - 2024
Y1 - 2024
N2 - Multiple system atrophy is a neurodegenerative disease with α-synuclein pathology predominating in the striatonigral and olivopontocerebellar systems. Mixed pathologies are considered to be of low frequency and mostly comprise primary age-related tauopathy or low levels of Alzheimer's disease-related neuropathologic change. Therefore, the concomitant presence of different misfolded proteins in the same brain region is less likely in multiple system atrophy. During the neuropathological evaluation of 21 consecutive multiple system atrophy cases, we identified four cases exhibiting an unusual discrepancy between high Thal amyloid-β phase and low transentorhinal Braak neurofibrillary tangle stage. We mapped α-synuclein pathology, measured the size and number of glial cytoplasmic inclusions and compared the amyloid-β peptides between multiple system atrophy and Alzheimer's disease. In addition, we performed α-synuclein seeding assay from the affected putamen samples. We performed genetic testing for APOE, MAPT, PSEN1, PSEN2 and APP. We refer to the four multiple system atrophy cases with discrepancy between amyloid-β and tau pathology as 'amyloid-β-predominant Alzheimer's disease neuropathologic change-multiple system atrophy' to distinguish these from multiple system atrophy with primary age-related tauopathy or multiple system atrophy with typical Alzheimer's disease neuropathologic change. As most multiple system atrophy cases with mixed pathologies reported in the literature, these cases did not show a peculiar clinical or MRI profile. Three amyloid-β-predominant Alzheimer's disease neuropathologic change-multiple system atrophy cases were available for genetic testing, and all carried the APOE 4 allele. The extent and severity of neuronal loss and α-synuclein pathology were not different compared with typical multiple system atrophy cases. Analysis of amyloid-β peptides revealed more premature amyloid-β plaques in amyloid-β-predominant Alzheimer's disease neuropathologic change-multiple system atrophy compared with Alzheimer's disease. α-Synuclein seeding amplification assay showed differences in the kinetics in two cases. This study highlights a rare mixed pathology variant of multiple system atrophy in which there is an anatomical meeting point of amyloid-β and α-synuclein, i.e. the striatum or cerebellum. Since biomarkers are entering clinical practice, these cases will be recognized, and the clinicians have to be informed that the prognosis is not necessarily different than in pure multiple system atrophy cases but that the effect of potential α-synuclein-based therapies might be influenced by the co-presence of amyloid-β in regions where α-synuclein also aggregates. We propose that mixed pathologies should be interpreted not only based on differences in the clinical phenotype but also on whether protein depositions regionally overlap, potentially leading to a different response to α-synuclein-targeted therapies.
AB - Multiple system atrophy is a neurodegenerative disease with α-synuclein pathology predominating in the striatonigral and olivopontocerebellar systems. Mixed pathologies are considered to be of low frequency and mostly comprise primary age-related tauopathy or low levels of Alzheimer's disease-related neuropathologic change. Therefore, the concomitant presence of different misfolded proteins in the same brain region is less likely in multiple system atrophy. During the neuropathological evaluation of 21 consecutive multiple system atrophy cases, we identified four cases exhibiting an unusual discrepancy between high Thal amyloid-β phase and low transentorhinal Braak neurofibrillary tangle stage. We mapped α-synuclein pathology, measured the size and number of glial cytoplasmic inclusions and compared the amyloid-β peptides between multiple system atrophy and Alzheimer's disease. In addition, we performed α-synuclein seeding assay from the affected putamen samples. We performed genetic testing for APOE, MAPT, PSEN1, PSEN2 and APP. We refer to the four multiple system atrophy cases with discrepancy between amyloid-β and tau pathology as 'amyloid-β-predominant Alzheimer's disease neuropathologic change-multiple system atrophy' to distinguish these from multiple system atrophy with primary age-related tauopathy or multiple system atrophy with typical Alzheimer's disease neuropathologic change. As most multiple system atrophy cases with mixed pathologies reported in the literature, these cases did not show a peculiar clinical or MRI profile. Three amyloid-β-predominant Alzheimer's disease neuropathologic change-multiple system atrophy cases were available for genetic testing, and all carried the APOE 4 allele. The extent and severity of neuronal loss and α-synuclein pathology were not different compared with typical multiple system atrophy cases. Analysis of amyloid-β peptides revealed more premature amyloid-β plaques in amyloid-β-predominant Alzheimer's disease neuropathologic change-multiple system atrophy compared with Alzheimer's disease. α-Synuclein seeding amplification assay showed differences in the kinetics in two cases. This study highlights a rare mixed pathology variant of multiple system atrophy in which there is an anatomical meeting point of amyloid-β and α-synuclein, i.e. the striatum or cerebellum. Since biomarkers are entering clinical practice, these cases will be recognized, and the clinicians have to be informed that the prognosis is not necessarily different than in pure multiple system atrophy cases but that the effect of potential α-synuclein-based therapies might be influenced by the co-presence of amyloid-β in regions where α-synuclein also aggregates. We propose that mixed pathologies should be interpreted not only based on differences in the clinical phenotype but also on whether protein depositions regionally overlap, potentially leading to a different response to α-synuclein-targeted therapies.
KW - Alzheimer's disease
KW - alpha-synuclein
KW - amyloid-β
KW - multiple system atrophy
KW - tau
UR - http://www.scopus.com/inward/record.url?scp=85193032326&partnerID=8YFLogxK
U2 - 10.1093/braincomms/fcae141
DO - 10.1093/braincomms/fcae141
M3 - Article
C2 - 38712319
AN - SCOPUS:85193032326
SN - 2632-1297
VL - 6
JO - Brain Communications
JF - Brain Communications
IS - 3
M1 - fcae141
ER -