TY - JOUR
T1 - Multiple modes of phase locking between sniffing and whisking during active exploration
AU - Ranade, Sachin
AU - Hangy, Balázs
AU - Kepecs, Adam
PY - 2013
Y1 - 2013
N2 - Sense organs are often actively controlled by motor processes and such active sensing profoundly shapes the timing of sensory information flow. The temporal coordination between different active sensing processes is less well understood but is essential for multisensory integration, coordination between brain regions, and energetically optimal sampling strategies. Here we studied the coordination between sniffing and whisking, the motor processes in rodents that control the acquisition of smell and touch information, respectively. Sniffing, high-frequency respiratory bouts, and whisking, rapid back and forth movements of mystacial whiskers, occur in the same theta frequency range (4-12 Hz) leading to a hypothesis that these sensorimotor rhythms are phase locked. To test this, we monitored sniffing using a thermocouple in the nasal cavity and whisking with an electromyogram of the mystacial pad in rats engaged in an open field reward foraging behavior. During bouts of exploration, sniffing and whisking showed strong one-to-one phase locking within the theta frequency range (4-12 Hz). Interestingly, we also observed multimode phase locking with multiple whisks within a sniff cycle or multiple sniffs within a whisk cycle-always at the same preferred phase. This specific phase relationship coupled the acquisition phases of the two sensorimotor rhythms, inhalation and whisker protraction. Our results suggest that sniffing and whisking may be under the control of interdependent rhythm generators that dynamically coordinate active acquisition of olfactory and somatosensory information.
AB - Sense organs are often actively controlled by motor processes and such active sensing profoundly shapes the timing of sensory information flow. The temporal coordination between different active sensing processes is less well understood but is essential for multisensory integration, coordination between brain regions, and energetically optimal sampling strategies. Here we studied the coordination between sniffing and whisking, the motor processes in rodents that control the acquisition of smell and touch information, respectively. Sniffing, high-frequency respiratory bouts, and whisking, rapid back and forth movements of mystacial whiskers, occur in the same theta frequency range (4-12 Hz) leading to a hypothesis that these sensorimotor rhythms are phase locked. To test this, we monitored sniffing using a thermocouple in the nasal cavity and whisking with an electromyogram of the mystacial pad in rats engaged in an open field reward foraging behavior. During bouts of exploration, sniffing and whisking showed strong one-to-one phase locking within the theta frequency range (4-12 Hz). Interestingly, we also observed multimode phase locking with multiple whisks within a sniff cycle or multiple sniffs within a whisk cycle-always at the same preferred phase. This specific phase relationship coupled the acquisition phases of the two sensorimotor rhythms, inhalation and whisker protraction. Our results suggest that sniffing and whisking may be under the control of interdependent rhythm generators that dynamically coordinate active acquisition of olfactory and somatosensory information.
UR - http://www.scopus.com/inward/record.url?scp=84877260872&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.3874-12.2013
DO - 10.1523/JNEUROSCI.3874-12.2013
M3 - Article
C2 - 23658164
AN - SCOPUS:84877260872
SN - 0270-6474
VL - 33
SP - 8250
EP - 8256
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 19
ER -