TY - JOUR
T1 - Multimodal fluorescence molecular imaging for in vivo characterization of skin cancer using endogenous and exogenous fluorophores
AU - Miller, Jessica P.
AU - Habimana-Griffin, Lemoyne
AU - Edwards, Tracy S.
AU - Achilefu, Samuel
N1 - Funding Information:
J.M. was supported by the National Cancer Institute (NCI) supplement award 3R01 CA171651-05S1. L.H. was supported by the NCI supplement award U54CA199092-01S1. Funding for this project was supported in part by grants from the NCI P50 CA094056 and R01 CA171651; National Institute of Biomedical Imaging and Bioengineering (NIBIB) R01 EB007276 and R01 EB008111; and Shared Instrumentation Grants from the Office of the Director, National Institutes of Health (ODNIH) S10 OD016237, S10 RR031625, and S10 OD020129. We thank Gail Sudlow and Walter Akers for their technical assistance. We thank James Rheinwald, PhD, Harvard University, for SCC-12 cells.
Publisher Copyright:
© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - Similarity of skin cancer with many benign skin pathologies requires reliable methods to detect and differentiate the different types of these lesions. Previous studies have explored the use of disparate optical techniques to identify and estimate the invasive nature of melanoma and basal cell carcinoma with varying outcomes. Here, we used a concerted approach that provides complementary information for rapid screening and characterization of tumors, focusing on squamous cell carcinoma (SCC) of the skin. Assessment of in vivo autofluorescence lifetime (FLT) imaging of endogenous fluorophores that are excitable at longer wavelengths (480 nm) than conventional NADH and FAD revealed a decrease in the short FLT component for SCC compared to normal skin, with mean values of 0.57±0.026 ns and 0.61±0.021 ns, respectively (p=0.004). Subsequent systemic administration of a near-infrared fluorescent molecular probe in SCC bearing mice, followed by the implementation of image processing methods on data acquired from two-dimensional and three-dimensional fluorescence molecular imaging, allowed us to estimate the tumor volume and depth, as well as quantify the fluorescent probe in the tumor. The result suggests the involvement of lipofuscin-like lipopigments and riboflavin in SCC metabolism and serves as a model for staging SCC.
AB - Similarity of skin cancer with many benign skin pathologies requires reliable methods to detect and differentiate the different types of these lesions. Previous studies have explored the use of disparate optical techniques to identify and estimate the invasive nature of melanoma and basal cell carcinoma with varying outcomes. Here, we used a concerted approach that provides complementary information for rapid screening and characterization of tumors, focusing on squamous cell carcinoma (SCC) of the skin. Assessment of in vivo autofluorescence lifetime (FLT) imaging of endogenous fluorophores that are excitable at longer wavelengths (480 nm) than conventional NADH and FAD revealed a decrease in the short FLT component for SCC compared to normal skin, with mean values of 0.57±0.026 ns and 0.61±0.021 ns, respectively (p=0.004). Subsequent systemic administration of a near-infrared fluorescent molecular probe in SCC bearing mice, followed by the implementation of image processing methods on data acquired from two-dimensional and three-dimensional fluorescence molecular imaging, allowed us to estimate the tumor volume and depth, as well as quantify the fluorescent probe in the tumor. The result suggests the involvement of lipofuscin-like lipopigments and riboflavin in SCC metabolism and serves as a model for staging SCC.
KW - autofluorescence
KW - depth
KW - fluorescence lifetime imaging
KW - fluorescence molecular tomography
KW - imaging
KW - near-infrared
KW - nonmelanoma skin cancer
KW - squamous cell carcinoma
KW - tumor
UR - http://www.scopus.com/inward/record.url?scp=85021669341&partnerID=8YFLogxK
U2 - 10.1117/1.JBO.22.6.066007
DO - 10.1117/1.JBO.22.6.066007
M3 - Article
C2 - 28613348
AN - SCOPUS:85021669341
SN - 1083-3668
VL - 22
JO - Journal of biomedical optics
JF - Journal of biomedical optics
IS - 6
M1 - 066007
ER -