Background: Estimates of “brain-predicted age” quantify apparent brain age compared to normative trajectories of neuroimaging features. The brain age gap (BAG) between predicted and chronological age is elevated in symptomatic Alzheimer disease (AD), but has not been well explored in presymptomatic AD. Prior studies have typically modeled BAG with structural magnetic resonance imaging (MRI), but more recently other modalities, including functional connectivity (FC) and multimodal MRI, have been explored. Methods: We trained three models to predict age from FC, structural (S), or multimodal MRI (S+FC) in 390 amyloid-negative cognitively normal (CN/A-) participants (18-89 years old). In independent samples of 144 CN/A-, 154 CN/A+, and 154 cognitively impaired (CI; CDR > 0) participants, we tested relationships between BAG and AD biomarkers of amyloid and tau, as well as a global cognitive composite. Results: All models predicted age in the control training set, with the multimodal model outperforming the unimodal models. All three BAG estimates were significantly elevated in CI compared to controls. FC-BAG was significantly reduced in CN/A+ participants compared to CN/A-. In CI participants only, elevated S-BAG and S+FC-BAG were associated with more advanced AD pathology and lower cognitive performance. Conclusions: Both FC-BAG and S-BAG are elevated in CI participants. However, FC and structural MRI also capture complementary signals. Specifically, FC-BAG may capture a unique biphasic response to presymptomatic AD pathology, while S-BAG may capture pathological progression and cognitive decline in the symptomatic stage. A multimodal age-prediction model improves sensitivity to healthy age differences.

Original languageEnglish
Article numbere81869
StatePublished - 2023


  • Alzheimer disease
  • Brain aging
  • machine learning
  • resting-state functional connectivity
  • structural MRI


Dive into the research topics of 'Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study'. Together they form a unique fingerprint.

Cite this