TY - JOUR
T1 - Multi-horizon predictive models for guiding extracorporeal resource allocation in critically ill COVID-19 patients
AU - Xue, Bing
AU - Shah, Neel
AU - Yang, Hanqing
AU - Kannampallil, Thomas
AU - Payne, Philip Richard Orrin
AU - Lu, Chenyang
AU - Said, Ahmed Sameh
N1 - Publisher Copyright:
© 2022 The Author(s). Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved.
PY - 2023/4/1
Y1 - 2023/4/1
N2 - Objective: Extracorporeal membrane oxygenation (ECMO) resource allocation tools are currently lacking. We developed machine learning (ML) models for predicting COVID-19 patients at risk of receiving ECMO to guide patient triage and resource allocation. Material and Methods: We included COVID-19 patients admitted to intensive care units for >24 h from March 2020 to October 2021, divided into training and testing development and testing-only holdout cohorts. We developed ECMO deployment timely prediction model ForecastECMO using Gradient Boosting Tree (GBT), with pre-ECMO prediction horizons from 0 to 48 h, compared to PaO2/FiO2 ratio, Sequential Organ Failure Assessment score, PREdiction of Survival on ECMO Therapy score, logistic regression, and 30 pre-selected clinical variables GBT Clinical GBT models, with area under the receiver operator curve (AUROC) and precision recall curve (AUPRC) metrics. Results: ECMO prevalence was 2.89% and 1.73% in development and holdout cohorts. ForecastECMO had the best performance in both cohorts. At the 18-h prediction horizon, a potentially clinically actionable pre-ECMO window, ForecastECMO, had the highest AUROC (0.94 and 0.95) and AUPRC (0.54 and 0.37) in development and holdout cohorts in identifying ECMO patients without data 18 h prior to ECMO. Discussion and Conclusions: We developed a multi-horizon model, ForecastECMO, with high performance in identifying patients receiving ECMO at various prediction horizons. This model has potential to be used as early alert tool to guide ECMO resource allocation for COVID-19 patients. Future prospective multicenter validation would provide evidence for generalizability and real-world application of such models to improve patient outcomes.
AB - Objective: Extracorporeal membrane oxygenation (ECMO) resource allocation tools are currently lacking. We developed machine learning (ML) models for predicting COVID-19 patients at risk of receiving ECMO to guide patient triage and resource allocation. Material and Methods: We included COVID-19 patients admitted to intensive care units for >24 h from March 2020 to October 2021, divided into training and testing development and testing-only holdout cohorts. We developed ECMO deployment timely prediction model ForecastECMO using Gradient Boosting Tree (GBT), with pre-ECMO prediction horizons from 0 to 48 h, compared to PaO2/FiO2 ratio, Sequential Organ Failure Assessment score, PREdiction of Survival on ECMO Therapy score, logistic regression, and 30 pre-selected clinical variables GBT Clinical GBT models, with area under the receiver operator curve (AUROC) and precision recall curve (AUPRC) metrics. Results: ECMO prevalence was 2.89% and 1.73% in development and holdout cohorts. ForecastECMO had the best performance in both cohorts. At the 18-h prediction horizon, a potentially clinically actionable pre-ECMO window, ForecastECMO, had the highest AUROC (0.94 and 0.95) and AUPRC (0.54 and 0.37) in development and holdout cohorts in identifying ECMO patients without data 18 h prior to ECMO. Discussion and Conclusions: We developed a multi-horizon model, ForecastECMO, with high performance in identifying patients receiving ECMO at various prediction horizons. This model has potential to be used as early alert tool to guide ECMO resource allocation for COVID-19 patients. Future prospective multicenter validation would provide evidence for generalizability and real-world application of such models to improve patient outcomes.
KW - COVID-19
KW - ECMO
KW - early alert
KW - machine learning
KW - prediction
KW - resource allocation
UR - http://www.scopus.com/inward/record.url?scp=85150397027&partnerID=8YFLogxK
U2 - 10.1093/jamia/ocac256
DO - 10.1093/jamia/ocac256
M3 - Article
C2 - 36575995
AN - SCOPUS:85150397027
SN - 1067-5027
VL - 30
SP - 656
EP - 667
JO - Journal of the American Medical Informatics Association
JF - Journal of the American Medical Informatics Association
IS - 4
ER -