TY - GEN
T1 - Multi-channel reliability and spectrum usage in real homes
T2 - 2011 IEEE 19th International Workshop on Quality of Service, IWQoS 2011
AU - Sha, Mo
AU - Hackmann, Gregory
AU - Lu, Chenyang
PY - 2011
Y1 - 2011
N2 - Home area networks (HANs) consisting of wireless sensors have emerged as the enabling technology for important applications such as smart energy. These applications impose unique QoS constraints, requiring low data rates but high network reliability in the face of unpredictable wireless environments. This paper presents two in-depth empirical studies on wireless channels in real homes, providing key design guidelines for meeting the QoS constraints of HAN applications. The spectrum study analyzes spectrum usage in the 2.4 GHz band where HANs based on the IEEE 802.15.4 standard must coexist with existing wireless devices. We characterize the ambient wireless environment in six apartments through passive spectrum analysis across the entire 2.4 GHz band over seven days in each apartment. We find that the wireless conditions in these residential environments are much more complex and varied than in a typical office environment. Moreover, while 802.11 signals play a significant role in spectrum usage, there also exists non-negligible noise from non-802.11 devices. The multichannel link study measures the reliability of different 802.15.4 channels through active probing with motes in ten apartments. We find that there is not always a persistently reliable channel over 24 hours, and that link reliability does not exhibit cyclic behavior at daily or weekly timescales. Nevertheless, reliability can be maintained through infrequent channel hopping, suggesting dynamic channel hopping as a key tool for meeting the QoS requirements of HAN applications. Our empirical studies provide important guidelines and insights in designing HANs for residential environments.
AB - Home area networks (HANs) consisting of wireless sensors have emerged as the enabling technology for important applications such as smart energy. These applications impose unique QoS constraints, requiring low data rates but high network reliability in the face of unpredictable wireless environments. This paper presents two in-depth empirical studies on wireless channels in real homes, providing key design guidelines for meeting the QoS constraints of HAN applications. The spectrum study analyzes spectrum usage in the 2.4 GHz band where HANs based on the IEEE 802.15.4 standard must coexist with existing wireless devices. We characterize the ambient wireless environment in six apartments through passive spectrum analysis across the entire 2.4 GHz band over seven days in each apartment. We find that the wireless conditions in these residential environments are much more complex and varied than in a typical office environment. Moreover, while 802.11 signals play a significant role in spectrum usage, there also exists non-negligible noise from non-802.11 devices. The multichannel link study measures the reliability of different 802.15.4 channels through active probing with motes in ten apartments. We find that there is not always a persistently reliable channel over 24 hours, and that link reliability does not exhibit cyclic behavior at daily or weekly timescales. Nevertheless, reliability can be maintained through infrequent channel hopping, suggesting dynamic channel hopping as a key tool for meeting the QoS requirements of HAN applications. Our empirical studies provide important guidelines and insights in designing HANs for residential environments.
UR - http://www.scopus.com/inward/record.url?scp=79960681492&partnerID=8YFLogxK
U2 - 10.1109/IWQOS.2011.5931349
DO - 10.1109/IWQOS.2011.5931349
M3 - Conference contribution
AN - SCOPUS:79960681492
SN - 9781457701030
T3 - IEEE International Workshop on Quality of Service, IWQoS
BT - 2011 IEEE 19th International Workshop on Quality of Service, IWQoS 2011
Y2 - 6 June 2011 through 7 June 2011
ER -