MTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases

Michela Palmieri, Rituraj Pal, Hemanth R. Nelvagal, Parisa Lotfi, Gary R. Stinnett, Michelle L. Seymour, Arindam Chaudhury, Lakshya Bajaj, Vitaliy V. Bondar, Laura Bremner, Usama Saleem, Dennis Y. Tse, Deepthi Sanagasetti, Samuel M. Wu, Joel R. Neilson, Fred A. Pereira, Robia G. Pautler, George G. Rodney, Jonathan D. Cooper, Marco Sardiello

Research output: Contribution to journalArticlepeer-review

330 Scopus citations

Abstract

Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.

Original languageEnglish
Article number14338
JournalNature communications
Volume8
DOIs
StatePublished - Feb 6 2017

Fingerprint

Dive into the research topics of 'MTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases'. Together they form a unique fingerprint.

Cite this