TY - JOUR
T1 - mSphere of Influence
T2 - The Key Role of Neutrophils in Tuberculosis and Type 2 Diabetes Comorbidity
AU - Mayer Bridwell, Anne E.
N1 - Publisher Copyright:
Copyright © 2021 Mayer Bridwell.
PY - 2021/5
Y1 - 2021/5
N2 - Annie Mayer Bridwell works in the field of tuberculosis pathogenesis from the host perspective. She is fascinated by comorbidities, and in this paper, she reflects on three publications that shaped her model of neutrophil-centric pathology in tuberculosis and type 2 diabetes comorbidity. She explains that “Systems immunology of diabetes-tuberculosis comorbidity reveals signatures of disease complications” (C. A. Prada-Medina, K. F. Fukutani, N. Pavan Kumar, L. Gil-Santana, et al., Sci Rep 7:1999, 2017, https://doi.org/ 10.1038/s41598-017-01767-4) led her to consider neutrophils as a central immunological player in comorbid patients. “Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis” (L. Moreira-Teixeira, P. J. Stimpson, E. Stavropoulos, S. Hadebe, et al., Nat Commun 11:5566, 2020, https://doi.org/10.1038/s41467-020-19412-6) and “Diabetes primes neutrophils to undergo NETosis, which impairs wound healing” (S. L. Wong, M. Demers, K. Martinod, M. Gallant, et al., Nat Med 21:815–819, 2015, https://doi.org/10.1038/nm.3887) then shed light on neutrophil extracellular trap (NET) formation as a common pathological feature of dysregulated neutrophils in tuberculosis and diabetes, respectively. Together, these works laid the foundation for Dr. Mayer Bridwell's interest in metabolic regulation of NETosis during TB infection and diabetes comorbidity.
AB - Annie Mayer Bridwell works in the field of tuberculosis pathogenesis from the host perspective. She is fascinated by comorbidities, and in this paper, she reflects on three publications that shaped her model of neutrophil-centric pathology in tuberculosis and type 2 diabetes comorbidity. She explains that “Systems immunology of diabetes-tuberculosis comorbidity reveals signatures of disease complications” (C. A. Prada-Medina, K. F. Fukutani, N. Pavan Kumar, L. Gil-Santana, et al., Sci Rep 7:1999, 2017, https://doi.org/ 10.1038/s41598-017-01767-4) led her to consider neutrophils as a central immunological player in comorbid patients. “Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis” (L. Moreira-Teixeira, P. J. Stimpson, E. Stavropoulos, S. Hadebe, et al., Nat Commun 11:5566, 2020, https://doi.org/10.1038/s41467-020-19412-6) and “Diabetes primes neutrophils to undergo NETosis, which impairs wound healing” (S. L. Wong, M. Demers, K. Martinod, M. Gallant, et al., Nat Med 21:815–819, 2015, https://doi.org/10.1038/nm.3887) then shed light on neutrophil extracellular trap (NET) formation as a common pathological feature of dysregulated neutrophils in tuberculosis and diabetes, respectively. Together, these works laid the foundation for Dr. Mayer Bridwell's interest in metabolic regulation of NETosis during TB infection and diabetes comorbidity.
KW - Diabetes
KW - Mycobacterium tuberculosis
KW - NETosis
KW - Neutrophils
KW - Tuberculosis
UR - http://www.scopus.com/inward/record.url?scp=85111789350&partnerID=8YFLogxK
U2 - 10.1128/mSphere.00251-21
DO - 10.1128/mSphere.00251-21
M3 - Review article
C2 - 34047649
AN - SCOPUS:85111789350
SN - 2379-5042
VL - 6
JO - mSphere
JF - mSphere
IS - 3
M1 - e00251-21
ER -