TY - JOUR
T1 - MRI-based high-dimensional hippocampal mapping in mesial temporal lobe epilepsy
AU - Hogan, R. Edward
AU - Wang, Lei
AU - Bertrand, Mary E.
AU - Willmore, L. James
AU - Bucholz, Richard D.
AU - Nassif, A. Sami
AU - Csernansky, John G.
PY - 2004/8
Y1 - 2004/8
N2 - MRI-based evaluation of the hippocampus is important in the assessment and treatment of patients with mesial temporal lobe epilepsy (MTLE). Using MRI-based large-deformation high-dimensional mapping (HDM-LD), which allows structural evaluation of regions of the hippocampus, we document the HDM-LD-defined pattern of hippocampal deformation in MTLE patients compared with matched controls. In 30 subjects with MTLE and confirmed medial temporal lobe sclerosis (MTS), we performed measurements of intracranial area, brain parenchymal volume and deformation-based hippocampal segmentations, and then grouped patients into right and left MTS groups (resulting in 15 subjects in each group). Using HDM-LD techniques, we compared the right and left MTS groups with a group of 15 matched controls. Analysis included both the MTS and contralateral hippocampi, and covariance for changes in brain parenchymal volume. Final results were interpreted using a segmentation showing normal hippocampal surface subfield anatomy. Comparing the MTS groups with controls, after covarying with brain parenchymal volume, the MTS hippocampi showed significant volume loss (P < 0.0001), contralateral hippocampi showed no significant volume loss. HDM-LD techniques showed significant shape changes, with marked inward deviation in the Sommer sector of the MTS hippocampi. In the contralateral hippocampi, the inferior surface of the hippocampal body showed inward deformation in the medial aspect of the subiculum, with minimal involvement of the Sommer sector. HDM-LD shows involvement of subregions of the hippocampus which are consistent with MTS histopathology. Contralateral hippocampi show different HDM-LD changes, suggesting that the underlying disease process in the contralateral hippocampi is different from MTS.
AB - MRI-based evaluation of the hippocampus is important in the assessment and treatment of patients with mesial temporal lobe epilepsy (MTLE). Using MRI-based large-deformation high-dimensional mapping (HDM-LD), which allows structural evaluation of regions of the hippocampus, we document the HDM-LD-defined pattern of hippocampal deformation in MTLE patients compared with matched controls. In 30 subjects with MTLE and confirmed medial temporal lobe sclerosis (MTS), we performed measurements of intracranial area, brain parenchymal volume and deformation-based hippocampal segmentations, and then grouped patients into right and left MTS groups (resulting in 15 subjects in each group). Using HDM-LD techniques, we compared the right and left MTS groups with a group of 15 matched controls. Analysis included both the MTS and contralateral hippocampi, and covariance for changes in brain parenchymal volume. Final results were interpreted using a segmentation showing normal hippocampal surface subfield anatomy. Comparing the MTS groups with controls, after covarying with brain parenchymal volume, the MTS hippocampi showed significant volume loss (P < 0.0001), contralateral hippocampi showed no significant volume loss. HDM-LD techniques showed significant shape changes, with marked inward deviation in the Sommer sector of the MTS hippocampi. In the contralateral hippocampi, the inferior surface of the hippocampal body showed inward deformation in the medial aspect of the subiculum, with minimal involvement of the Sommer sector. HDM-LD shows involvement of subregions of the hippocampus which are consistent with MTS histopathology. Contralateral hippocampi show different HDM-LD changes, suggesting that the underlying disease process in the contralateral hippocampi is different from MTS.
KW - Epilepsy surgery
KW - Hippocampus
KW - MRI
KW - Mesial temporal sclerosis
KW - Temporal lobe epilepsy
UR - http://www.scopus.com/inward/record.url?scp=4043099095&partnerID=8YFLogxK
U2 - 10.1093/brain/awh197
DO - 10.1093/brain/awh197
M3 - Article
C2 - 15231583
AN - SCOPUS:4043099095
SN - 0006-8950
VL - 127
SP - 1731
EP - 1740
JO - Brain
JF - Brain
IS - 8
ER -