TY - JOUR
T1 - Motion-compensated scheme for sequential scanned statistical iterative dual-energy CT reconstruction
AU - Ge, Tao
AU - Liao, Rui
AU - Medrano, Maria
AU - Politte, David G.
AU - Whiting, Bruce R.
AU - Williamson, Jeffrey F.
AU - O’Sullivan, Joseph A.
N1 - Publisher Copyright:
© 2023 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd.
PY - 2023/7/21
Y1 - 2023/7/21
N2 - Objective. Dual-energy computed tomography (DECT) has been widely used to reconstruct numerous types of images due its ability to better discriminate tissue properties. Sequential scanning is a popular dual-energy data acquisition method as it requires no specialized hardware. However, patient motion between two sequential scans may lead to severe motion artifacts in DECT statistical iterative reconstructions (SIR) images. The objective is to reduce the motion artifacts in such reconstructions. Approach. We propose a motion-compensation scheme that incorporates a deformation vector field into any DECT SIR. The deformation vector field is estimated via the multi-modality symmetric deformable registration method. The precalculated registration mapping and its inverse or adjoint are then embedded into each iteration of the iterative DECT algorithm. Main results. Results from a simulated and clinical case show that the proposed framework is capable of reducing motion artifacts in DECT SIRs. Percentage mean square errors in regions of interest in the simulated and clinical cases were reduced from 4.6% to 0.5% and 6.8% to 0.8%, respectively. A perturbation analysis was then performed to determine errors in approximating the continuous deformation by using the deformation field and interpolation. Our findings show that errors in our method are mostly propagated through the target image and amplified by the inverse matrix of the combination of the Fisher information and Hessian of the penalty term. Significance. We have proposed a novel motion-compensation scheme to incorporate a 3D registration method into the joint statistical iterative DECT algorithm in order to reduce motion artifacts caused by inter-scan motion, and successfully demonstrate that interscan motion corrections can be integrated into the DECT SIR process, enabling accurate imaging of radiological quantities on conventional SECT scanners, without significant loss of either computational efficiency or accuracy.
AB - Objective. Dual-energy computed tomography (DECT) has been widely used to reconstruct numerous types of images due its ability to better discriminate tissue properties. Sequential scanning is a popular dual-energy data acquisition method as it requires no specialized hardware. However, patient motion between two sequential scans may lead to severe motion artifacts in DECT statistical iterative reconstructions (SIR) images. The objective is to reduce the motion artifacts in such reconstructions. Approach. We propose a motion-compensation scheme that incorporates a deformation vector field into any DECT SIR. The deformation vector field is estimated via the multi-modality symmetric deformable registration method. The precalculated registration mapping and its inverse or adjoint are then embedded into each iteration of the iterative DECT algorithm. Main results. Results from a simulated and clinical case show that the proposed framework is capable of reducing motion artifacts in DECT SIRs. Percentage mean square errors in regions of interest in the simulated and clinical cases were reduced from 4.6% to 0.5% and 6.8% to 0.8%, respectively. A perturbation analysis was then performed to determine errors in approximating the continuous deformation by using the deformation field and interpolation. Our findings show that errors in our method are mostly propagated through the target image and amplified by the inverse matrix of the combination of the Fisher information and Hessian of the penalty term. Significance. We have proposed a novel motion-compensation scheme to incorporate a 3D registration method into the joint statistical iterative DECT algorithm in order to reduce motion artifacts caused by inter-scan motion, and successfully demonstrate that interscan motion corrections can be integrated into the DECT SIR process, enabling accurate imaging of radiological quantities on conventional SECT scanners, without significant loss of either computational efficiency or accuracy.
KW - CT reconstruction
KW - dual-energy CT
KW - image registration
KW - iterative reconstruction
KW - material decomposition
UR - http://www.scopus.com/inward/record.url?scp=85164243287&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/acdf38
DO - 10.1088/1361-6560/acdf38
M3 - Article
C2 - 37327796
AN - SCOPUS:85164243287
SN - 0031-9155
VL - 68
JO - Physics in medicine and biology
JF - Physics in medicine and biology
IS - 14
M1 - 145002
ER -