TY - JOUR
T1 - Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations with Cap Thickness and Lipid Percent
T2 - An IVUS-Based Fluid-Structure Interaction Multi-patient Study
AU - Wang, Liang
AU - Zheng, Jie
AU - Maehara, Akiko
AU - Yang, Chun
AU - Billiar, Kristen L.
AU - Wu, Zheyang
AU - Bach, Richard
AU - Muccigrosso, David
AU - Mintz, Gary S.
AU - Tang, Dalin
N1 - Publisher Copyright:
© 2015 Wang et al.
PY - 2015
Y1 - 2015
N2 - Plaque vulnerability, defined as the likelihood that a plaque would rupture, is difficult to quantify due to lack of in vivo plaque rupture data. Morphological and stress-based plaque vulnerability indices were introduced as alternatives to obtain quantitative vulnerability assessment. Correlations between these indices and key plaque features were investigated. In vivo intravascular ultrasound (IVUS) data were acquired from 14 patients and IVUS-based 3D fluid-structure interaction (FSI) coronary plaque models with cyclic bending were constructed to obtain plaque wall stress/strain and flow shear stress for analysis. For the 617 slices from the 14 patients, lipid percentage, min cap thickness, critical plaque wall stress (CPWS), strain (CPWSn) and flow shear stress (CFSS) were recorded, and cap index, lipid index and morphological index were assigned to each slice using methods consistent with American Heart Association (AHA) plaque classification schemes. A stress index was introduced based on CPWS. Linear Mixed-Effects (LME) models were used to analyze the correlations between the mechanical and morphological indices and key morphological factors associated with plaque rupture. Our results indicated that for all 617 slices, CPWS correlated with min cap thickness, cap index, morphological index with r = -0.6414, 0.7852, and 0.7411 respectively (p<0.0001). The correlation between CPWS and lipid percentage, lipid index were weaker (r = 0.2445, r = 0.2338, p<0.0001). Stress index correlated with cap index, lipid index, morphological index positively with r = 0.8185, 0.3067, and 0.7715, respectively, all with p<0.0001. For all 617 slices, the stress index has 66.77% agreement with morphological index. Morphological and stress indices may serve as quantitative plaque vulnerability assessment supported by their strong correlations with morphological features associated with plaque rupture. Differences between the two indices may lead to better plaque assessment schemes when both indices were jointly used with further validations from clinical studies.
AB - Plaque vulnerability, defined as the likelihood that a plaque would rupture, is difficult to quantify due to lack of in vivo plaque rupture data. Morphological and stress-based plaque vulnerability indices were introduced as alternatives to obtain quantitative vulnerability assessment. Correlations between these indices and key plaque features were investigated. In vivo intravascular ultrasound (IVUS) data were acquired from 14 patients and IVUS-based 3D fluid-structure interaction (FSI) coronary plaque models with cyclic bending were constructed to obtain plaque wall stress/strain and flow shear stress for analysis. For the 617 slices from the 14 patients, lipid percentage, min cap thickness, critical plaque wall stress (CPWS), strain (CPWSn) and flow shear stress (CFSS) were recorded, and cap index, lipid index and morphological index were assigned to each slice using methods consistent with American Heart Association (AHA) plaque classification schemes. A stress index was introduced based on CPWS. Linear Mixed-Effects (LME) models were used to analyze the correlations between the mechanical and morphological indices and key morphological factors associated with plaque rupture. Our results indicated that for all 617 slices, CPWS correlated with min cap thickness, cap index, morphological index with r = -0.6414, 0.7852, and 0.7411 respectively (p<0.0001). The correlation between CPWS and lipid percentage, lipid index were weaker (r = 0.2445, r = 0.2338, p<0.0001). Stress index correlated with cap index, lipid index, morphological index positively with r = 0.8185, 0.3067, and 0.7715, respectively, all with p<0.0001. For all 617 slices, the stress index has 66.77% agreement with morphological index. Morphological and stress indices may serve as quantitative plaque vulnerability assessment supported by their strong correlations with morphological features associated with plaque rupture. Differences between the two indices may lead to better plaque assessment schemes when both indices were jointly used with further validations from clinical studies.
UR - http://www.scopus.com/inward/record.url?scp=84953248375&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1004652
DO - 10.1371/journal.pcbi.1004652
M3 - Article
C2 - 26650721
AN - SCOPUS:84953248375
SN - 1553-734X
VL - 11
JO - PLoS computational biology
JF - PLoS computational biology
IS - 12
M1 - e1004652
ER -