TY - JOUR
T1 - Monoclonal antibody-assisted structure-function analysis of the carbohydrate recognition domain of surfactant protein D
AU - Hartshorn, Kevan L.
AU - White, Mitchell R.
AU - Rynkiewicz, Michael
AU - Sorensen, Grith
AU - Holmskov, Uffe
AU - Head, James
AU - Crouch, Erika C.
PY - 2010/9
Y1 - 2010/9
N2 - Surfactant protein D (SP-D) plays important roles in host defense against a variety of pathogens including influenza A virus (IAV). Ligand binding by SP-D is mediated by the trimeric neck and carbohydrate recognition domain (NCRD). We used monoclonal antibodies (mAbs) against human SP-D and a panel of mutant collectin NCRD constructs to identify functionally and structurally important epitopes. The ability of SP-D to bind to IAV and mannan involved partially overlapping binding sites that are distinct from those involved in binding to the glycoprotein-340 (gp-340) scavenger receptor protein. A species-specific motif (D324,D325,R343), which has been implicated in the specific binding of several ligands, contributes to recognition by mAbs that block antiviral or mannan binding activity. D325, in particular, is involved in the epitopes of these blocking mAbs. Conversely, the interspecies substitution of arginine for Lys343 in the rat NCRD (rK343R) conferred binding to two of the mAbs. The single site substitution of alanine for R349 or E347 resulted in highly selective alterations in mAb binding and caused decreased antiviral activity. Mutations at Glu333 (E333A), Trp340 (W340F), and Phe335 (F335A), which abrogated antiviral activity, were associated with decreased binding to multiple blocking mAbs, consistent with critical structural roles. More conservative substitutions at 335, which showed a significant increase in neutralization activity, caused selective loss of binding to one mAb. The analysis reveals, for the first time, an extended binding site for IAV; calcium-dependent antiviral activity involves residues flanking the primary carbohydrate binding site as well as more remote residues displayed on the carbohydrate recognition domain surface.
AB - Surfactant protein D (SP-D) plays important roles in host defense against a variety of pathogens including influenza A virus (IAV). Ligand binding by SP-D is mediated by the trimeric neck and carbohydrate recognition domain (NCRD). We used monoclonal antibodies (mAbs) against human SP-D and a panel of mutant collectin NCRD constructs to identify functionally and structurally important epitopes. The ability of SP-D to bind to IAV and mannan involved partially overlapping binding sites that are distinct from those involved in binding to the glycoprotein-340 (gp-340) scavenger receptor protein. A species-specific motif (D324,D325,R343), which has been implicated in the specific binding of several ligands, contributes to recognition by mAbs that block antiviral or mannan binding activity. D325, in particular, is involved in the epitopes of these blocking mAbs. Conversely, the interspecies substitution of arginine for Lys343 in the rat NCRD (rK343R) conferred binding to two of the mAbs. The single site substitution of alanine for R349 or E347 resulted in highly selective alterations in mAb binding and caused decreased antiviral activity. Mutations at Glu333 (E333A), Trp340 (W340F), and Phe335 (F335A), which abrogated antiviral activity, were associated with decreased binding to multiple blocking mAbs, consistent with critical structural roles. More conservative substitutions at 335, which showed a significant increase in neutralization activity, caused selective loss of binding to one mAb. The analysis reveals, for the first time, an extended binding site for IAV; calcium-dependent antiviral activity involves residues flanking the primary carbohydrate binding site as well as more remote residues displayed on the carbohydrate recognition domain surface.
KW - Collectins
KW - Influenza virus
UR - http://www.scopus.com/inward/record.url?scp=77956678060&partnerID=8YFLogxK
U2 - 10.1152/ajplung.00096.2010
DO - 10.1152/ajplung.00096.2010
M3 - Article
C2 - 20601494
AN - SCOPUS:77956678060
SN - 1040-0605
VL - 299
SP - L384-L392
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 3
ER -