TY - JOUR
T1 - Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device with Integrated Self-Powered Piezo-Floating-Gate Sensors
AU - Borchani, Wassim
AU - Aono, Kenji
AU - Lajnef, Nizar
AU - Chakrabartty, Shantanu
N1 - Funding Information:
This work was supported in part by the National Science Foundation STTR Phase I Grant 1417044 (Subcontract through Piezonix LLC) and Graduate Research Fellowship Program under Grant DGE-0802267 and Grant DGE-1143954.
Publisher Copyright:
© 2015 IEEE.
PY - 2016/7
Y1 - 2016/7
N2 - Objective: Achieving better surgical outcomes in cases of traumatic bone fractures requires postoperative monitoring of changes in the growth and mechanical properties of the tissue and bones during the healing process. While current in-vivo imaging techniques can provide a snapshot of the extent of bone growth, it is unable to provide a history of the healing process, which is important if any corrective surgery is required. Monitoring the time evolution of in-vivo mechanical loads using existing technology is a challenge due to the need for continuous power while maintaining patient mobility and comfort. Methods: This paper investigates the feasibility of self-powered monitoring of the bone-healing process using our previously reported piezo-floating-gate (PFG) sensors. The sensors are directly integrated with a fixation device and operate by harvesting energy from microscale strain variations in the fixation structure. Results: We show that the sensors can record and store the statistics of the strain evolution during the healing process for offline retrieval and analysis. Additionally, we present measurement results using a biomechanical phantom comprising of a femur fracture fixation plate; bone healing is emulated by inserting different materials, with gradually increasing elastic moduli, inside a fracture gap. Conclusion: The PFG sensor can effectively sense, compute, and record continuously evolving statistics of mechanical loading over a typical healing period of a bone, and the statistics could be used to differentiate between different bone-healing conditions. Significance: The proposed sensor presents a reliable objective technique to assess bone-healing progress and help decide on the removal time of the fixation device.
AB - Objective: Achieving better surgical outcomes in cases of traumatic bone fractures requires postoperative monitoring of changes in the growth and mechanical properties of the tissue and bones during the healing process. While current in-vivo imaging techniques can provide a snapshot of the extent of bone growth, it is unable to provide a history of the healing process, which is important if any corrective surgery is required. Monitoring the time evolution of in-vivo mechanical loads using existing technology is a challenge due to the need for continuous power while maintaining patient mobility and comfort. Methods: This paper investigates the feasibility of self-powered monitoring of the bone-healing process using our previously reported piezo-floating-gate (PFG) sensors. The sensors are directly integrated with a fixation device and operate by harvesting energy from microscale strain variations in the fixation structure. Results: We show that the sensors can record and store the statistics of the strain evolution during the healing process for offline retrieval and analysis. Additionally, we present measurement results using a biomechanical phantom comprising of a femur fracture fixation plate; bone healing is emulated by inserting different materials, with gradually increasing elastic moduli, inside a fracture gap. Conclusion: The PFG sensor can effectively sense, compute, and record continuously evolving statistics of mechanical loading over a typical healing period of a bone, and the statistics could be used to differentiate between different bone-healing conditions. Significance: The proposed sensor presents a reliable objective technique to assess bone-healing progress and help decide on the removal time of the fixation device.
KW - Bone healing monitoring
KW - self-powered piezo-floating-gate (PFG) sensors
KW - Smart trauma-fixation device
UR - http://www.scopus.com/inward/record.url?scp=84978083311&partnerID=8YFLogxK
U2 - 10.1109/TBME.2015.2496237
DO - 10.1109/TBME.2015.2496237
M3 - Article
C2 - 26540667
AN - SCOPUS:84978083311
SN - 0018-9294
VL - 63
SP - 1463
EP - 1472
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 7
M1 - 7312914
ER -