Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device with Integrated Self-Powered Piezo-Floating-Gate Sensors

Wassim Borchani, Kenji Aono, Nizar Lajnef, Shantanu Chakrabartty

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Objective: Achieving better surgical outcomes in cases of traumatic bone fractures requires postoperative monitoring of changes in the growth and mechanical properties of the tissue and bones during the healing process. While current in-vivo imaging techniques can provide a snapshot of the extent of bone growth, it is unable to provide a history of the healing process, which is important if any corrective surgery is required. Monitoring the time evolution of in-vivo mechanical loads using existing technology is a challenge due to the need for continuous power while maintaining patient mobility and comfort. Methods: This paper investigates the feasibility of self-powered monitoring of the bone-healing process using our previously reported piezo-floating-gate (PFG) sensors. The sensors are directly integrated with a fixation device and operate by harvesting energy from microscale strain variations in the fixation structure. Results: We show that the sensors can record and store the statistics of the strain evolution during the healing process for offline retrieval and analysis. Additionally, we present measurement results using a biomechanical phantom comprising of a femur fracture fixation plate; bone healing is emulated by inserting different materials, with gradually increasing elastic moduli, inside a fracture gap. Conclusion: The PFG sensor can effectively sense, compute, and record continuously evolving statistics of mechanical loading over a typical healing period of a bone, and the statistics could be used to differentiate between different bone-healing conditions. Significance: The proposed sensor presents a reliable objective technique to assess bone-healing progress and help decide on the removal time of the fixation device.

Original languageEnglish
Article number7312914
Pages (from-to)1463-1472
Number of pages10
JournalIEEE Transactions on Biomedical Engineering
Volume63
Issue number7
DOIs
StatePublished - Jul 2016

Keywords

  • Bone healing monitoring
  • self-powered piezo-floating-gate (PFG) sensors
  • Smart trauma-fixation device

Fingerprint

Dive into the research topics of 'Monitoring of Postoperative Bone Healing Using Smart Trauma-Fixation Device with Integrated Self-Powered Piezo-Floating-Gate Sensors'. Together they form a unique fingerprint.

Cite this