Molecular game theory for a toxin-dominant food chain model

Bowen Li, Jonathan R. Silva, Xiancui Lu, Lei Luo, Yunfei Wang, Lizhen Xu, Aerziguli Aierken, Zhanserik Shynykul, Peter Muiruri Kamau, Anna Luo, Jian Yang, Deyuan Su, Fan Yang, Jianmin Cui, Shilong Yang, Ren Lai

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Animal toxins that are used to subdue prey and deter predators act as the key drivers in natural food chains and ecosystems. However, the predators of venomous animals may exploit feeding adaptation strategies to overcome toxins their prey produce. Much remains unknown about the genetic and molecular game process in the toxin-dominant food chain model. Here, we show an evolutionary strategy in different trophic levels of scorpion-eating amphibians, scorpions and insects, representing each predation relationship in habitats dominated by the paralytic toxins of scorpions. For scorpions preying on insects, we found that the scorpion α-toxins irreversibly activate the skeletal muscle sodium channel of their prey (insect, BgNaV1) through a membrane delivery mechanism and an efficient binding with the Asp/Lys-Tyr motif of BgNaV1. However, in the predatory game between frogs and scorpions, with a single point mutation (Lys to Glu) in this motif of the frog's skeletal muscle sodium channel (fNaV1.4), fNaV1.4 breaks this interaction and diminishes muscular toxicity to the frog; thus, frogs can regularly prey on scorpions without showing paralysis. Interestingly, this molecular strategy also has been employed by some other scorpion-eating amphibians, especially anurans. In contrast to these amphibians, the Asp/Lys-Tyr motifs are structurally and functionally conserved in other animals that do not prey on scorpions. Together, our findings elucidate the protein-protein interacting mechanism of a toxin-dominant predator-prey system, implying the evolutionary game theory at a molecular level.

Original languageEnglish
Pages (from-to)1191-1200
Number of pages10
JournalNational Science Review
Issue number6
StatePublished - Nov 1 2019


  • amphibian
  • molecular game
  • receptor
  • scorpion
  • toxin


Dive into the research topics of 'Molecular game theory for a toxin-dominant food chain model'. Together they form a unique fingerprint.

Cite this