TY - JOUR
T1 - Molecular basis behind inability of mitochondrial holocytochrome c synthase to mature bacterial cytochromes
T2 - Defining A Critical Role for Cytochrome cα HELIX-1
AU - Babbitt, Shalon E.
AU - Hsu, Jennifer
AU - Kranz, Robert G.
N1 - Publisher Copyright:
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
PY - 2016/8/19
Y1 - 2016/8/19
N2 - Mitochondrial holocytochrome c synthase (HCCS) is required for cytochrome c (cyt c) maturation and therefore respiration. HCCS efficiently attaches heme via two thioethers to CXXCH of mitochondrial but not bacterial cyt c even though they are functionally conserved. This inability is due to residues in the bacterial cyt c N terminus, but the molecular basis is unknown. Human cyts c with deletions of single residues in αhelix-1, which mimic bacterial cyt c, are poorly matured by human HCCS. Focusing on ΔM13 cyt c, we co-purified this variant with HCCS, demonstrating that HCCS recognizes the bacterial- like cytochrome. Although an HCCS-WT cyt c complex contains two covalent links, HCCS-ΔM13 cyt c contains only one thioether attachment. Using multiple approaches, we show that the single attachment is to the second thiol of C15SQC18H, indicating that αhelix-1 is required for positioning the first cysteine for covalent attachment, whereas the histidine of CXXCH positions the second cysteine. Modeling of the N-terminal structure suggested that the serine residue (of CSQCH) would be anchored where the first cysteine should be inΔM13cyt c. An engineered cyt c with a CQCH motif in the ΔM13 background is matured at higher levels (2-3-fold), providing further evidence for α helix-1 positioning the first cysteine. Bacterial cyt c biogenesis pathways (Systems I and II) appear to recognize simply the CXXCH motif, not requiring α helix-1. Results here explain mechanistically how HCCS (System III) requires an extended region adjacent to CXXCH for maturation.
AB - Mitochondrial holocytochrome c synthase (HCCS) is required for cytochrome c (cyt c) maturation and therefore respiration. HCCS efficiently attaches heme via two thioethers to CXXCH of mitochondrial but not bacterial cyt c even though they are functionally conserved. This inability is due to residues in the bacterial cyt c N terminus, but the molecular basis is unknown. Human cyts c with deletions of single residues in αhelix-1, which mimic bacterial cyt c, are poorly matured by human HCCS. Focusing on ΔM13 cyt c, we co-purified this variant with HCCS, demonstrating that HCCS recognizes the bacterial- like cytochrome. Although an HCCS-WT cyt c complex contains two covalent links, HCCS-ΔM13 cyt c contains only one thioether attachment. Using multiple approaches, we show that the single attachment is to the second thiol of C15SQC18H, indicating that αhelix-1 is required for positioning the first cysteine for covalent attachment, whereas the histidine of CXXCH positions the second cysteine. Modeling of the N-terminal structure suggested that the serine residue (of CSQCH) would be anchored where the first cysteine should be inΔM13cyt c. An engineered cyt c with a CQCH motif in the ΔM13 background is matured at higher levels (2-3-fold), providing further evidence for α helix-1 positioning the first cysteine. Bacterial cyt c biogenesis pathways (Systems I and II) appear to recognize simply the CXXCH motif, not requiring α helix-1. Results here explain mechanistically how HCCS (System III) requires an extended region adjacent to CXXCH for maturation.
UR - http://www.scopus.com/inward/record.url?scp=84983504315&partnerID=8YFLogxK
U2 - 10.1074/jbc.M116.741231
DO - 10.1074/jbc.M116.741231
M3 - Article
C2 - 27387500
AN - SCOPUS:84983504315
SN - 0021-9258
VL - 291
SP - 17523
EP - 17534
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 34
ER -