TY - JOUR
T1 - Modulation of apolipoprotein B-100 mRNA editing
T2 - Effects on hepatic very low density lipoprotein assembly and intracellular apoB distribution in the rat
AU - Davidson, N. O.
AU - Carlos, R. C.
AU - Sherman, H. L.
AU - Hay, R. V.
PY - 1990
Y1 - 1990
N2 - We have studied the consequences of alterations to hepatic apoB mRNA editing on the biosynthesis and intracellular distribution of newly synthesized apoB variants together with their mass distribution in nascent Golgi very low density lipoproteins (VLDL). Radiolabeled liver membrane fractions were prepared from control or hypothyroid animals and separated by discontinuous sucrose gradient centrifugation. Hepatic apoB-100 synthesis in these groups accounted for 93-100% of total newly synthesized apoB species of Golgi fractions recovered from the sucrose gradients (G1 and G2). The analogous fractions isolated from the livers of hyperthyroid (treated with 3,3',5-triiodo-L-thyronine, T3) animals revealed that newly synthesized apoB-100 accounted for only 46 ± 10% (G1) and 24 ± 11% (G2), respectively, of total newly synthesized apoB. ApoB-100 mass in nascent Golgi VLDL from control and hypothyroid G1 fractions represented 70-78% total apoB as determined by Western blot analysis. By contrast, Golgi VLDL from hyperthyroid animals contained predominantly (> 78%) apoB-48 as the apoB species. Electron microscopy revealed that the morphology and size distribution of hyperthyroid G1 VLDL were similar to particles isolated from control animals. Thus, despite a profound reduction in the proportion of apoB-100 mRNA species containing an unmodified codon (CAA, B-GLN) at position 2153 in hyperthyroid animals (6 ± 1% vs 50-61% in control and hypothyroid animals) apoB-100 biosynthesis was detectable in a defined membrane fraction isolated by discontinuous sucrose gradient centrifugation. However, no apoB-100 synthesis was detectable in liver samples prepared by Polytron disruption in Triton-containing buffers. These data suggest that effective hepatic VLDL assembly and secretion in the T3-treated rat continues despite a profound reduction in apoB-100 biosynthesis and implies that apoB-48 contains the requisite domains to direct this process, a situation analogous to that in the intestine.
AB - We have studied the consequences of alterations to hepatic apoB mRNA editing on the biosynthesis and intracellular distribution of newly synthesized apoB variants together with their mass distribution in nascent Golgi very low density lipoproteins (VLDL). Radiolabeled liver membrane fractions were prepared from control or hypothyroid animals and separated by discontinuous sucrose gradient centrifugation. Hepatic apoB-100 synthesis in these groups accounted for 93-100% of total newly synthesized apoB species of Golgi fractions recovered from the sucrose gradients (G1 and G2). The analogous fractions isolated from the livers of hyperthyroid (treated with 3,3',5-triiodo-L-thyronine, T3) animals revealed that newly synthesized apoB-100 accounted for only 46 ± 10% (G1) and 24 ± 11% (G2), respectively, of total newly synthesized apoB. ApoB-100 mass in nascent Golgi VLDL from control and hypothyroid G1 fractions represented 70-78% total apoB as determined by Western blot analysis. By contrast, Golgi VLDL from hyperthyroid animals contained predominantly (> 78%) apoB-48 as the apoB species. Electron microscopy revealed that the morphology and size distribution of hyperthyroid G1 VLDL were similar to particles isolated from control animals. Thus, despite a profound reduction in the proportion of apoB-100 mRNA species containing an unmodified codon (CAA, B-GLN) at position 2153 in hyperthyroid animals (6 ± 1% vs 50-61% in control and hypothyroid animals) apoB-100 biosynthesis was detectable in a defined membrane fraction isolated by discontinuous sucrose gradient centrifugation. However, no apoB-100 synthesis was detectable in liver samples prepared by Polytron disruption in Triton-containing buffers. These data suggest that effective hepatic VLDL assembly and secretion in the T3-treated rat continues despite a profound reduction in apoB-100 biosynthesis and implies that apoB-48 contains the requisite domains to direct this process, a situation analogous to that in the intestine.
KW - Golgi membranes
KW - apoB-100
KW - apoB-48
KW - microsomal membrane subfractions
KW - nuclear thyroid hormone receptor
UR - http://www.scopus.com/inward/record.url?scp=0025326533&partnerID=8YFLogxK
M3 - Article
C2 - 2380638
AN - SCOPUS:0025326533
SN - 0022-2275
VL - 31
SP - 899
EP - 908
JO - Journal of lipid research
JF - Journal of lipid research
IS - 5
ER -