Abstract

A common assumption about peptide binding to the class I MHC complex is that each residue in the peptide binds independently. Based on this assumption, modifications in class I MHC anchor positions were used to improve the binding properties of low-affinity peptides (termed altered peptide ligands), especially in the case when tumor-associated peptides are used for immuno-therapy. Using a new molecular tool in the form of recombinant Abs endowed with Ag-specific MHC-restricted specificity of T cells, we show that changes in the identity of anchor residues may have significant effects, such as altering the conformation of the peptide-MHC complex, and as a consequence, may affect the TCR-contacting residues. We herein demonstrate that the binding of TCR-like recombinant Abs, specific for the melanoma differentiation Ag gp100 T cell epitope G9-209, is entirely dependent on the identity of a single peptide anchor residue at position 2. An example is shown in which TCR-like Abs can recognize the specific complex only when a modified peptide, G9-209-2 M, with improved affinity to HLA-A2 was used, but not with the unmodified natural peptide. Importantly, these results demonstrate, using a novel molecular tool, that modifications at anchor residues can dramatically influence the conformation of the MHC peptide groove and thus may have a profound effect on TCR interactions. Moreover, these results may have important implications in designing modifications in peptides for cancer immunotherapy, because most such peptides studied are of low affinity.

Original languageEnglish
Pages (from-to)4399-4407
Number of pages9
JournalJournal of Immunology
Volume169
Issue number8
DOIs
StatePublished - Oct 15 2002

Fingerprint

Dive into the research topics of 'Modification of a tumor-derived peptide at an HLA-A2 anchor residue can alter the conformation of the MHC-peptide complex: Probing with TCR-like recombinant antibodies'. Together they form a unique fingerprint.

Cite this