Abstract

In the suprachiasmatic nucleus (SCN), γ-aminobutyric acid (GABA) is a primary neurotransmitter. GABA can signal through two types of GABA A receptor subunits, often referred to as synaptic GABA A (gamma subunit) and extra-synaptic GABA A (delta subunit). To test the functional roles of these distinct GABA A in regulating circadian rhythms, we developed a multicellular SCN model where we could separately compare the effects of manipulating GABA neurotransmitter or receptor dynamics. Our model predicted that blocking GABA signalling modestly increased synchrony among circadian cells, consistent with published SCN pharmacology. Conversely, the model predicted that lowering GABA A receptor density reduced firing rate, circadian cell fraction, amplitude and synchrony among individual neurons. When we tested these predictions, we found that the knockdown of delta GABA A reduced the amplitude and synchrony of clock gene expression among cells in SCN explants. The model further predicted that increasing gamma GABA A densities could enhance synchrony, as opposed to increasing delta GABA A densities. Overall, our model reveals how blocking GABA A receptors can modestly increase synchrony, while increasing the relative density of gamma over delta subunits can dramatically increase synchrony. We hypothesize that increased gamma GABA A density in the winter could underlie the tighter phase relationships among SCN cells.

Original languageEnglish
Article number20210454
JournalJournal of the Royal Society Interface
Volume18
Issue number182
DOIs
StatePublished - Sep 15 2021

Keywords

  • GABA receptor
  • circadian rhythms
  • mathematical modelling
  • suprachiasmatic nucleus

Fingerprint

Dive into the research topics of 'Modelling the functional roles of synaptic and extra-synaptic γ-aminobutyric acid receptor dynamics in circadian timekeeping'. Together they form a unique fingerprint.

Cite this