TY - GEN
T1 - Modeling with node degree preservation can accurately find communities
AU - Jin, Di
AU - Chen, Zheng
AU - He, Dongxiao
AU - Zhang, Weixiong
N1 - Publisher Copyright:
Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - An important problem in analyzing complex networks is discovery of modular or community structures embedded in the networks. Although being promising for identifying network communities, the popular stochastic models often do not preserve node degrees, thus reducing their representation power and applicability to real-world networks. Here we address this critical problem. Instead of using a block-model, we adopted a random-graph null model to faithfully capture community structures by preserving in the model the expected node degrees. The new model, learned using nonnegative matrix factorization, is more accurate and robust in representing community structures than the existing methods. Our results from extensive experiments on synthetic benchmarks and real-world networks show the superior performance of the new method over the existing methods in detecting both disjoint and overlapping communities.
AB - An important problem in analyzing complex networks is discovery of modular or community structures embedded in the networks. Although being promising for identifying network communities, the popular stochastic models often do not preserve node degrees, thus reducing their representation power and applicability to real-world networks. Here we address this critical problem. Instead of using a block-model, we adopted a random-graph null model to faithfully capture community structures by preserving in the model the expected node degrees. The new model, learned using nonnegative matrix factorization, is more accurate and robust in representing community structures than the existing methods. Our results from extensive experiments on synthetic benchmarks and real-world networks show the superior performance of the new method over the existing methods in detecting both disjoint and overlapping communities.
UR - http://www.scopus.com/inward/record.url?scp=84959547375&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84959547375
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 160
EP - 167
BT - Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PB - AI Access Foundation
T2 - 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Y2 - 25 January 2015 through 30 January 2015
ER -