Modeling venous plasma samples in [18F] FDG PET studies: a nonlinear mixed-effects approach

Tommaso Volpi, John J. Lee, Erica Silvestri, Tony Durbin, Maurizio Corbetta, Manu S. Goyal, Andrei G. Vlassenko, Alessandra Bertoldo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The gold-standard approach to quantifying dynamic PET images relies on using invasive measures of the arterial plasma tracer concentration. An attractive alternative is to employ an image-derived input function (IDIF), corrected for spillover effects and rescaled with venous plasma samples. However, venous samples are not always available for every participant. In this work, we used the nonlinear mixed-effects modeling approach to develop a model which infers venous tracer kinetics by using venous samples obtained from a population of healthy individuals and integrating subject-specific covariates. Population parameters (fixed effects), their between-subject variability (random effects), and the effects of covariates were estimated. The selected model will allow to reliably infer venous tracer kinetics in subjects with missing measurements. Clinical relevance - The derived model will be relevant for fully noninvasive dynamic FDG PET quantification using image-derived input functions in both healthy and patient populations when hemodynamics is not impaired.

Original languageEnglish
Title of host publication44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4704-4707
Number of pages4
ISBN (Electronic)9781728127828
DOIs
StatePublished - 2022
Event44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, United Kingdom
Duration: Jul 11 2022Jul 15 2022

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2022-July
ISSN (Print)1557-170X

Conference

Conference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Country/TerritoryUnited Kingdom
CityGlasgow
Period07/11/2207/15/22

Fingerprint

Dive into the research topics of 'Modeling venous plasma samples in [18F] FDG PET studies: a nonlinear mixed-effects approach'. Together they form a unique fingerprint.

Cite this