Modeling the Kinetics of Serum Glial Fibrillary Acidic Protein, Ubiquitin Carboxyl-Terminal Hydrolase-L1, and S100B Concentrations in Patients with Traumatic Brain Injury

Robert D. Welch, Morgan Ellis, Lawrence M. Lewis, Syed I. Ayaz, Valerie H. Mika, Scott Millis, Linda Papa

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1), and S100B have been shown to be predictive of patients with brain injury. Kinetics of these biomarkers in injured humans have not been extensively examined. This prospective multi-center study included patients with mild-to-moderate traumatic brain injury. Blood samples obtained at enrollment and every 6 h up to 24 h post-injury were assayed for GFAP, UCH-L1, and S100B. Random effects models examined changes in the biomarkers' level over time. A total of 167 patients were enrolled; mean age was 46.0 ± 17.8, 61.1% were male, 143 (85.6%) had a Glasgow Coma Scale score of 15, and 33 (19.8%) had a positive head computed tomography (CT) scan. Baseline median biomarker concentrations for all three were higher among CT-positive patients (p < 0.0001) but GFAP was the only biomarker that significantly increased over time among CT-positive patients relative to CT-negative patients (log transformed values 0.037; 95% confidence interval 0.02, 0.05; p < 0.001), indicating a 3.7% per hour rise in GFAP concentration. There was no significant increase in either UCH-L1 or S100B in CT-positive patients (p = 0.15 and p = 0.47, respectively). GFAP concentrations increased 3.7% per hour among CT-positive patients whereas neither UCH-L1 nor S100B increased, compared with CT-negative patients. The kinetics and temporal profile of GFAP suggest it may be a more robust biomarker to detect patients with positive CT findings, particularly at later post-injury times. Further study is needed to determine if GFAP is a useful test to follow throughout a patient's clinical course.

Original languageEnglish
Pages (from-to)1957-1971
Number of pages15
JournalJournal of neurotrauma
Volume34
Issue number11
DOIs
StatePublished - Jun 1 2017

Keywords

  • biomarkers
  • glia cell response to injury
  • neural injury
  • traumatic brain injury

Fingerprint

Dive into the research topics of 'Modeling the Kinetics of Serum Glial Fibrillary Acidic Protein, Ubiquitin Carboxyl-Terminal Hydrolase-L1, and S100B Concentrations in Patients with Traumatic Brain Injury'. Together they form a unique fingerprint.

Cite this