Modeling of topology-dependent neural network plasticity induced by activity-dependent electrical stimulation

Ruiye Ni, Noah M. Ledbetter, Dennis L. Barbour

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Activity-dependent electrical stimulation can induce cerebrocortical reorganization in vivo by activating brain areas using stimulation derived from the statistics of neural or muscular activity. Due to the nature of synaptic plasticity, network topology is likely to influence the effectiveness of this type of neuromodulation, yet its effect under different network topologies is unclear. To address this issue, we simulated small-scale three-neuron networks to explore topology-dependent network plasticity. The induced neuroplastic changes were evaluated by network coherence and unit-pair mutual information measures. We demonstrated that involvement of monosynaptic feedforward and reciprocal connections is more likely to lead to persistent decreased network coherence and increased network mutual information independent of the global network topology. On the contrary, disynaptic feedforward connections exhibit heterogeneous coherence and unit-pair mutual information sensitivity that depends strongly upon the network context.

Original languageEnglish
Title of host publication2013 6th International IEEE EMBS Conference on Neural Engineering, NER 2013
Pages831-834
Number of pages4
DOIs
StatePublished - 2013
Event2013 6th International IEEE EMBS Conference on Neural Engineering, NER 2013 - San Diego, CA, United States
Duration: Nov 6 2013Nov 8 2013

Publication series

NameInternational IEEE/EMBS Conference on Neural Engineering, NER
ISSN (Print)1948-3546
ISSN (Electronic)1948-3554

Conference

Conference2013 6th International IEEE EMBS Conference on Neural Engineering, NER 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period11/6/1311/8/13

Fingerprint

Dive into the research topics of 'Modeling of topology-dependent neural network plasticity induced by activity-dependent electrical stimulation'. Together they form a unique fingerprint.

Cite this