Modeling dendrite density from magnetic resonance diffusion measurements

Sune N. Jespersen, Christopher D. Kroenke, Leif Østergaard, Joseph J.H. Ackerman, Dmitriy A. Yablonskiy

Research output: Contribution to journalArticlepeer-review

269 Scopus citations

Abstract

Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i.e., in extracellular space and glia cells. The model parameters are estimated from 153 diffusion-weighted images acquired from a formalin-fixed baboon brain. A close correspondence between the data and the signal model is found, with the model parameters consistent with literature values. The model provides an estimate of dendrite density from noninvasive MR diffusion measurements, a parameter likely to be of value for understanding normal as well as abnormal brain development and function.

Original languageEnglish
Pages (from-to)1473-1486
Number of pages14
JournalNeuroImage
Volume34
Issue number4
DOIs
StatePublished - Feb 15 2007

Keywords

  • Cytoarchitectonics
  • Diffusion
  • Neural tissue
  • Spherical harmonics

Fingerprint

Dive into the research topics of 'Modeling dendrite density from magnetic resonance diffusion measurements'. Together they form a unique fingerprint.

Cite this