Abstract
Introduction: Machine learning models were used to discover novel disease trajectories for autosomal dominant Alzheimer's disease. Methods: Longitudinal structural magnetic resonance imaging, amyloid positron emission tomography (PET), and fluorodeoxyglucose PET were acquired in 131 mutation carriers and 74 non-carriers from the Dominantly Inherited Alzheimer Network; the groups were matched for age, education, sex, and apolipoprotein ε4 (APOE ε4). A deep neural network was trained to predict disease progression for each modality. Relief algorithms identified the strongest predictors of mutation status. Results: The Relief algorithm identified the caudate, cingulate, and precuneus as the strongest predictors among all modalities. The model yielded accurate results for predicting future Pittsburgh compound B (R2 = 0.95), fluorodeoxyglucose (R2 = 0.93), and atrophy (R2 = 0.95) in mutation carriers compared to non-carriers. Discussion: Results suggest a sigmoidal trajectory for amyloid, a biphasic response for metabolism, and a gradual decrease in volume, with disease progression primarily in subcortical, middle frontal, and posterior parietal regions.
Original language | English |
---|---|
Pages (from-to) | 1005-1016 |
Number of pages | 12 |
Journal | Alzheimer's and Dementia |
Volume | 17 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2021 |
Keywords
- Pittsburgh compound B (PiB)
- autosomal dominant Alzheimer's disease (ADAD)
- fluorodeoxyglucose (FDG)
- machine learning
- magnetic resonance imaging (MRI)