TY - JOUR
T1 - Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network
T2 - Current state and a future vision
AU - Undiagnosed Diseases Network
AU - Baldridge, Dustin
AU - Wangler, Michael F.
AU - Bowman, Angela N.
AU - Yamamoto, Shinya
AU - Schedl, Tim
AU - Pak, Stephen C.
AU - Postlethwait, John H.
AU - Shin, Jimann
AU - Solnica-Krezel, Lilianna
AU - Bellen, Hugo J.
AU - Westerfield, Monte
N1 - Funding Information:
We envision NIH support for deep dives into mechanisms that would extend beyond the MON program and which would be supported by multiple NIH institutes, perhaps through competitive ‘R’ grants. Importantly, such support would also enable external model organism experts to join the MON. We are advocating for support for two distinct and important activities that will be carried out by the future MON: (1) providing rapid diagnosis and (2) uncovering disease mechanisms. To expand further, Activity (1), the diagnosis of undiagnosed diseases patients, involves using model organism experiments to provide data that solve a medical mystery for a patient in a timely manner; and Activity (2) the mechanistic understanding of previously undiagnosed diseases, includes understanding the underlying biology of disease, using rare diseases to understand common diseases, and preclinical identification and testing of therapeutics, which is a more in-depth effort.
Funding Information:
Research reported in this manuscript was supported by the NIH Common Fund, through the Office of Strategic Coordination/Office of the NIH Director under Award Numbers U54NS108251 (D.B., A.N.B., T.S., S.C.P., and L.S.-K.), U54NS093793 (M.F.W., S.Y., J.H.P., H.J.B., and M.W.), and R01OD011116 (J.H.P.), by the Office of the NIH Director under Award Number R24OD022005 (H.J.B), by the National Institute of General Medical Sciences under Award Number R01GM067858 (H.J.B), and by the National Human Genome Research Institute under Award Number K08HG010154 (D.B.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. H.J.B. is an investigator of the Howard Hughes Medical Institute (HHMI).
Publisher Copyright:
© The Author(s) 2021.
PY - 2021
Y1 - 2021
N2 - Decreased sequencing costs have led to an explosion of genetic and genomic data. These data have revealed thou-sands of candidate human disease variants. Establishing which variants cause phenotypes and diseases, however, has remained challenging. Significant progress has been made, including advances by the National Institutes of Health (NIH)-funded Undiagnosed Diseases Network (UDN). However, 6000–13,000 additional disease genes remain to be identified. The continued discovery of rare diseases and their genetic underpinnings provides benefits to affected patients, of whom there are more than 400 million worldwide, and also advances understanding the mechanisms of more common diseases. Platforms employing model organisms enable discovery of novel gene-disease relationships, help establish variant pathogenicity, and often lead to the exploration of underlying mechanisms of pathophysiology that suggest new therapies. The Model Organism Screening Center (MOSC) of the UDN is a unique resource dedi-cated to utilizing informatics and functional studies in model organisms, including worm (Caenorhabditis elegans), fly (Drosophila melanogaster), and zebrafish (Danio rerio), to aid in diagnosis. The MOSC has directly contributed to the diagnosis of challenging cases, including multiple patients with complex, multi-organ phenotypes. In addition, the MOSC provides a framework for how basic scientists and clinicians can collaborate to drive diagnoses. Customized experimental plans take into account patient presentations, specific genes and variant(s), and appropriateness of each model organism for analysis. The MOSC also generates bioinformatic and experimental tools and reagents for the wider scientific community. Two elements of the MOSC that have been instrumental in its success are (1) multidiscipli-nary teams with expertise in variant bioinformatics and in human and model organism genetics, and (2) mechanisms for ongoing communication with clinical teams. Here we provide a position statement regarding the central role of model organisms for continued discovery of disease genes, and we advocate for the continuation and expansion of MOSC-type research entities as a Model Organisms Network (MON) to be funded through grant applications submit-ted to the NIH, family groups focused on specific rare diseases, other philanthropic organizations, industry partner-ships, and other sources of support.
AB - Decreased sequencing costs have led to an explosion of genetic and genomic data. These data have revealed thou-sands of candidate human disease variants. Establishing which variants cause phenotypes and diseases, however, has remained challenging. Significant progress has been made, including advances by the National Institutes of Health (NIH)-funded Undiagnosed Diseases Network (UDN). However, 6000–13,000 additional disease genes remain to be identified. The continued discovery of rare diseases and their genetic underpinnings provides benefits to affected patients, of whom there are more than 400 million worldwide, and also advances understanding the mechanisms of more common diseases. Platforms employing model organisms enable discovery of novel gene-disease relationships, help establish variant pathogenicity, and often lead to the exploration of underlying mechanisms of pathophysiology that suggest new therapies. The Model Organism Screening Center (MOSC) of the UDN is a unique resource dedi-cated to utilizing informatics and functional studies in model organisms, including worm (Caenorhabditis elegans), fly (Drosophila melanogaster), and zebrafish (Danio rerio), to aid in diagnosis. The MOSC has directly contributed to the diagnosis of challenging cases, including multiple patients with complex, multi-organ phenotypes. In addition, the MOSC provides a framework for how basic scientists and clinicians can collaborate to drive diagnoses. Customized experimental plans take into account patient presentations, specific genes and variant(s), and appropriateness of each model organism for analysis. The MOSC also generates bioinformatic and experimental tools and reagents for the wider scientific community. Two elements of the MOSC that have been instrumental in its success are (1) multidiscipli-nary teams with expertise in variant bioinformatics and in human and model organism genetics, and (2) mechanisms for ongoing communication with clinical teams. Here we provide a position statement regarding the central role of model organisms for continued discovery of disease genes, and we advocate for the continuation and expansion of MOSC-type research entities as a Model Organisms Network (MON) to be funded through grant applications submit-ted to the NIH, family groups focused on specific rare diseases, other philanthropic organizations, industry partner-ships, and other sources of support.
KW - C. elegans
KW - Drosophila melanogaster
KW - Model organisms
KW - Undiagnosed diseases
KW - Zebrafish
UR - http://www.scopus.com/inward/record.url?scp=85105687707&partnerID=8YFLogxK
U2 - 10.1186/s13023-021-01839-9
DO - 10.1186/s13023-021-01839-9
M3 - Article
C2 - 33962631
AN - SCOPUS:85105687707
SN - 1750-1172
VL - 16
JO - Orphanet Journal of Rare Diseases
JF - Orphanet Journal of Rare Diseases
IS - 1
M1 - 206
ER -