Original language | English |
---|---|
Article number | dev200193 |
Journal | Development (Cambridge) |
Volume | 148 |
Issue number | 19 |
DOIs | |
State | Published - Oct 2021 |
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Development (Cambridge), Vol. 148, No. 19, dev200193, 10.2021.
Research output: Contribution to journal › Review article › peer-review
TY - JOUR
T1 - Model organism databases are in jeopardy
AU - Bellen, Hugo J.
AU - Hubbard, E. J.A.
AU - Lehmann, Ruth
AU - Madhani, Hiten D.
AU - Solnica-Krezel, Lila
AU - Southard-Smith, E. Michelle
N1 - Funding Information: We propose several strategies that should be explored to mitigate the problem and restore MOD funding to a workable level to sustain research. The first is based on the simple observation that many NIH institutes support MO research that crucially depends on the MODs (Table 1; which is not a comprehensive list). If these institutes were to join forces with the NHGRI and agree on an NIH-wide stable support system for the MODs, each MOD could maintain its required curation and continue to innovate. These institutes are a driving force of scientific innovation and the MODs dramatically enhance the power of the grants that are being supported by each institute. Therefore, it seems logical that they all contribute to the support of the MODs. The second strategy is to tap discretionary funds of the Director of the NIH that are meant to prioritize important research issues. The third strategy is to charge each NIH grant using a MO fee that is proportional to the allocated funds. This fee could vary with a maximum of $1000 per year, and could be adapted over time to the needs of each MOD. The fourth strategy is to directly charge users of MODs. This strategy has been considered by some of the MODs. However, in addition to creating administrative hurdles, it is cumbersome and would unfairly affect users with limited funds. Fifth, the MODs could rely on voluntary contributions of users. This strategy is being implemented at FlyBase, but the funds that have been collected cover only a minor proportion of the support needed (Norbert Perrimon, personal communication). Last, an agreement with foreign national research institutes based on use could be implemented. Given that MO researchers in Europe, China and Japan constitute a large user MOD group (nearly 50%), seeking support from the European Research Council, the National Natural Science Foundation of China, and the Ministries of Education, Health, Labor and Welfare or the Agency for Medical Research and Development in Japan is a possibility. Funding Information: The financial support for MO research comes from different NIH institutes and centers (ICs), and varies from MO to MO (Table 1). At one extreme, yeast research is mostly supported by the National Institute of General Medicine (NIGMS), whereas work on zebrafish and mice relies on support from many different institutes. The number of grants supported by this funding in the year 2020 is also shown in Table 1. These numbers may be an underestimate or an overestimate, depending on the species, as they rely on grant applicants mentioning the species in the title, terms or abstract of the funded grant. We previously published a similar analysis (Wangler et al., 2015) and, based on additional analyses, the NIH estimated that, in the case of some MOs such as worms and flies, about 20-30% or more NIH R01 grants were supported than we had estimated (https://nexus.od.nih.gov/all/2016/07/14/a-look-at-trends-in-nihs-model-organism-research-support/). On the other hand, for mouse, the estimated number of grants may be slightly inflated as the number of grants supporting mouse research based on analyses from NIH in 2016 was closer to 12,500 (https://www. youtube.com/watch?v=f9FXNU1YWQo). The precise numbers, however, are not a major issue for our argument here. We estimate that a total of about 21-24,000 NIH grants supported research in one or more of the seven MOs in 2020, and numerous grants are also supporting investigations in other MOs, such as planarians, chick, fish species other than zebrafish, rabbits, guinea pigs, ferrets, axolotl and larger animals. This probably corresponds to $11-13 billion of the total NIH budget or approximately one quarter of the allocated budget of $42 billion. The main conclusion is that significant resources are allocated to MO research by the NIH, and that MO researchers in the USA and, more broadly, across the world, heavily rely on MODs. Funding Information: Model organisms (MOs), including yeast, worm (C. elegans), fruit fly (Drosophila), zebrafish, frog (Xenopus), mouse and rat, contribute greatly to our understanding of human development and disease. To be successful, MO research critically depends on many shared resources. Particularly important are MO stock centers and MO databases (MODs), without which most MO work would not be possible. This article focuses on MODs, which are mostly supported by grants from the National Institutes of Health (NIH), especially the National Human Genome Research Institute (NHGRI).
PY - 2021/10
Y1 - 2021/10
UR - http://www.scopus.com/inward/record.url?scp=85116906842&partnerID=8YFLogxK
U2 - 10.1242/DEV.200193
DO - 10.1242/DEV.200193
M3 - Review article
C2 - 35231122
AN - SCOPUS:85116906842
SN - 0950-1991
VL - 148
JO - Development (Cambridge)
JF - Development (Cambridge)
IS - 19
M1 - dev200193
ER -